【題目】如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積.
【答案】解:連接AC,如圖所示:
∵∠B=90°,
∴△ABC為直角三角形,
又∵AB=3,BC=4,
∴根據(jù)勾股定理得:AC= =5,
又∵CD=12,AD=13,
∴AD2=132=169,CD2+AC2=122+52=144+25=169,
∴CD2+AC2=AD2 ,
∴△ACD為直角三角形,∠ACD=90°,
則S四邊形ABCD=S△ABC+S△ACD= ABBC+ ACCD= ×3×4+ ×5×12=36.
故四邊形ABCD的面積是36.
【解析】連接AC,在直角三角形ABC中,由AB及BC的長,利用勾股定理求出AC的長,再由AD及CD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線,與x軸、y軸分別交于點(diǎn)A、C,以AC為對(duì)角線作矩形OABC,點(diǎn)P、Q分別為射線OC、射線AC上的動(dòng)點(diǎn),且有AQ=2CP, 連結(jié)PQ,設(shè)點(diǎn)P的坐標(biāo)為P(0,t).
(1)求點(diǎn)B的坐標(biāo).
(2)若t=1時(shí),連接BQ,求△ABQ的面積.
(3)如圖2,以PQ為直徑作⊙I,記⊙I與射線AC的另一個(gè)交點(diǎn)為E.
① 若,求此時(shí)t的值.
② 若圓心I在△ABC內(nèi)部(不包含邊上),則此時(shí)t的取值范圍為 .(直接寫出答案)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,E是CD的中點(diǎn),連接OE,過點(diǎn)C作CF∥BD交線段OE的延長線于點(diǎn)F,連接DF.求證:
(1)OD=CF;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與y軸交于點(diǎn)C(0,-4),與x軸交于A、B,且點(diǎn)B的坐標(biāo)為(2,0).
(1)求該拋物線的解析式;
(2) 若點(diǎn)P是AB上的一動(dòng)點(diǎn),過點(diǎn)P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3) 若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),且△OMD是等腰三角形,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE∥BF,∠1與∠2互補(bǔ).
(1)試說明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,則DE與AC垂直嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于正比例函數(shù) y 3x ,下列說法正確的是( )
A. y 隨 x 的增大而減小 B. y 隨 x 的增大而增大
C. y 隨 x 的減小而增大 D. y 有最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】x,y表示兩個(gè)數(shù),規(guī)定新運(yùn)算“※”及“△”如下:x※y=5x+4y,x△y=8xy,求(3※4)△6的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下面的點(diǎn)陣圖形和與之對(duì)應(yīng)的等式,探究其中的規(guī)律:
(1) 請(qǐng)你在④和⑤后面的橫線上分別寫出對(duì)應(yīng)的等式:
(2)通過猜想,寫出與第n個(gè)點(diǎn)陣圖形相對(duì)應(yīng)的等式.
(3)求:點(diǎn)的個(gè)數(shù)等于96的點(diǎn)陣圖形是第幾個(gè).
(4)判斷:是否存在點(diǎn)的個(gè)數(shù)等于2018的點(diǎn)陣圖形,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com