【題目】甲、乙兩個(gè)工程隊(duì)原計(jì)劃修建一條長(zhǎng)100千米的公路,由于實(shí)際情況,進(jìn)行了兩次改道,每次改道以相同的百分率增加修路長(zhǎng)度,使得實(shí)際修建長(zhǎng)度為121千米,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍。
(1)求兩次改道的平均增長(zhǎng)率;
(2)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?
(3)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬(wàn)元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬(wàn)元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過(guò)42.4萬(wàn)元,甲工程隊(duì)至少修路多少天?
【答案】(1)兩次改道的平均增長(zhǎng)率為10%;(2)甲工程隊(duì)每天修路1.5千米,乙工程隊(duì)每天修路1千米;(3)甲工程隊(duì)至少修路60天.
【解析】
(1)設(shè)兩次改道的平均增長(zhǎng)率為x,根據(jù)原計(jì)劃修路的長(zhǎng)度及經(jīng)兩次改道后的修路長(zhǎng)度,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論;
(2)設(shè)乙工程隊(duì)每天修路y千米,則甲工程隊(duì)每天修路(y+0.5)千米,根據(jù)工作時(shí)間=工作總量÷工作效率結(jié)合乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍,即可得出關(guān)于y的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;
(3)設(shè)甲工程隊(duì)修路m天,則乙工程隊(duì)修路(121-1.5m)天,根據(jù)總費(fèi)用=甲工程隊(duì)每日所需費(fèi)用×甲工程隊(duì)工作天數(shù)+乙工程隊(duì)每日所需費(fèi)用×乙工程隊(duì)工作天數(shù)結(jié)合兩個(gè)工程隊(duì)修路總費(fèi)用不超過(guò)42.4萬(wàn)元,即可得出關(guān)于m的一元一次不等式,解之取其中的最小值即可得出結(jié)論.
(1)設(shè)兩次改道的平均增長(zhǎng)率為,
依題意得:
,
,
故兩次改道的平均增長(zhǎng)率為10%;
(2)設(shè)乙工程隊(duì)每天修路千米,甲工程隊(duì)每天修路千米,
根據(jù)題意得:,
解得:,
經(jīng)檢驗(yàn):是方程的解,
(千米)
答:甲工程隊(duì)每天修路1.5千米,乙工程隊(duì)每天修路1千米;
(3)設(shè)甲工程隊(duì)修路天,
由題意得:,
解得:,
答:甲工程隊(duì)至少修路60天.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交軸于點(diǎn)(在的左側(cè)),交軸于點(diǎn),點(diǎn)為線段上一點(diǎn),過(guò)點(diǎn)作軸交拋物線于點(diǎn),過(guò)點(diǎn)作軸交拋物線于點(diǎn). 設(shè)點(diǎn)的橫坐標(biāo)為.
(1)當(dāng)時(shí),求的長(zhǎng).
(2)連結(jié),當(dāng),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC上任一點(diǎn),AD=AE且∠BAC=∠DAE.
(1)若ED平分∠AEC,求證:CE∥AD;
(2)若∠BAC=90°,且D在BC中點(diǎn)時(shí),試判斷四邊形ADCE的形狀,并說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的對(duì)稱軸是直線x=1,且經(jīng)過(guò)點(diǎn)(﹣1,0),則下列結(jié)論:①abc<0;②2a﹣b=0;③a<﹣ ;④若方程ax2+bx+c﹣2=0的兩個(gè)根為x1和x2,則(x1+1)(x2﹣3)<0,正確的有( 。﹤(gè).
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+ 的圖象經(jīng)過(guò)A(﹣1,0),B(3,0),與y軸相交于點(diǎn)C.點(diǎn)P為第一象限的拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P分別做BC和x軸的垂線,交BC于點(diǎn)E和F,交x軸于點(diǎn)M和N.
(1)求這個(gè)二次函數(shù)的解析式;
(2)求線段PE最大值,并求出線段PE最大時(shí)點(diǎn)P的坐標(biāo);
(3)若S△PMN=3S△PEF時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中, ,已知△ABC的周長(zhǎng)為15,則菱形的對(duì)角線的長(zhǎng)為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),直線分別交軸負(fù)半軸和軸正半軸于兩點(diǎn),將沿軸翻折至,且的面積為8.
(1)如圖,求直線的解析式;
(2)如圖,點(diǎn)為第二象限內(nèi)上方的一點(diǎn),連接,的面積為,求與的函數(shù)關(guān)系式(用含的代數(shù)式表示);
(3)如圖,在(2)的條件下,連接與相交于點(diǎn),點(diǎn)為軸負(fù)半軸上一點(diǎn),,與相交于點(diǎn),若,且,求點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,分別以,為邊向外作等邊和等邊,與交于點(diǎn),則的度數(shù)為:____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,F是弧AD上的一點(diǎn),AF,CD的延長(zhǎng)線相交于點(diǎn)G.
(1)若⊙O的半徑為3,且∠DFC=45°,求弦CD的長(zhǎng).
(2)求證:∠AFC=∠DFG.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com