(2013•沙市區(qū)一模)關于x的一元二次方程x2+2x+k+1=0的實數(shù)解是x1和x2,如果x1+x2-x1x2<-1,且k為整數(shù),則k的值為
-1或0
-1或0
分析:根據(jù)根與系數(shù)的關系得到x1+x2=-2,x1•x2=k+1,由x1+x2-x1x2<-1得到-2-(k+1)<-1,解得k>-2,再根據(jù)根的判別式得到4-4(k+1)≥0,解得k≤0,
則k的范圍為-2<k≤0,然后找出此范圍內的整數(shù)即可.
解答:解:根據(jù)題意得x1+x2=-2,x1•x2=k+1,
∵x1+x2-x1x2<-1,
∴-2-(k+1)<-1,解得k>-2,
∵△=4-4(k+1)≥0,解得k≤0,
∴-2<k≤0,
∴整數(shù)k為-1或0.
故答案為-1或0.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程兩個為x1,x2,則x1+x2=-
b
a
,x1•x2=
c
a
.也考查了一元二次方程的根的判別式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•沙市區(qū)一模)如圖,Rt△ABC中,∠ACB=90°,AC=BC=2
2
,若把Rt△ABC繞邊AB所在直線旋轉一周,則所得幾何體的表面積為
8
2
π
8
2
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•沙市區(qū)一模)兩塊大小一樣斜邊為4且含有30°角的三角板如圖水平放置.將△CDE繞C點按逆時針方向旋轉,當E點恰好落在AB邊上的E′點時,
EE′
的長度為
π
3
π
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•沙市區(qū)一模)拋物線y=x2-6x+5的頂點坐標和對稱軸分別為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•沙市區(qū)一模)如圖,已知點A的坐標為(
3
,3),AB⊥x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA,AB分別交與點C,D.若AB=3BD,則四邊形BOCD的面積為
2+
3
2
2+
3
2

查看答案和解析>>

同步練習冊答案