(2013•吉林)如圖,在矩形ABCD中,AB的長度為a,BC的長度為b,其中
23
b<a<b.將此矩形紙片按下列順序折疊,則C′D′的長度為
3a-2b
3a-2b
(用含a、b的代數(shù)式表示).
分析:由軸對稱可以得出A′B=AB=a,就有A′C=b-a,從而就有A′C′=b-a,就可以得出C′D′=a-2(b-a),化簡就可以得出結論.
解答:解:由軸對稱可以得出A′B=AB=a,
∵BC=b,
∴A′C=b-a.
由軸對稱可以得出A′C′=b-a,
∴C′D′=a-2(b-a),
∴C′D′=3a-2b.
故答案為:3a-2b.
點評:本題考查了軸對稱的運用,代數(shù)式的運用,折疊問題在實際問題中的運用,解答本題時利用折疊問題抓住在折疊變化中不變的線段是解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•吉林)如圖,把Rt△ABC繞點A逆時針旋轉40°,得到Rt△AB′C′,點C′恰好落在邊AB上,連接BB′,則∠BB′C′=
20
20
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•吉林)如圖所示,體育課上,小麗的鉛球成績?yōu)?.4m,她投出的鉛球落在( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•吉林)如圖,在平面直角坐標系中,拋物線所表示的函數(shù)解析式為y=-2(x-h)2+k,則下列結論正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•吉林)如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點D、E、F分別是邊AB、BC、AC的中點,連接DE、DF,動點P,Q分別從點A、B同時出發(fā),運動速度均為1cm/s,點P沿A    F    D的方向運動到點D停止;點Q沿BC的方向運動,當點P停止運動時,點Q也停止運動.在運動過程中,過點Q作BC的垂線交AB于點M,以點P,M,Q為頂點作平行四邊形PMQN.設平行四邊形邊形PMQN與矩形FDEC重疊部分的面積為y(cm2)(這里規(guī)定線段是面積為0有幾何圖形),點P運動的時間為x(s)
(1)當點P運動到點F時,CQ=
5
5
cm;
(2)在點P從點F運動到點D的過程中,某一時刻,點P落在MQ上,求此時BQ的長度;
(3)當點P在線段FD上運動時,求y與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•吉林)如圖①,在平面直角坐標系中,點P(0,m2)(m>0)在y軸正半軸上,過點P作平行于x軸的直線,分別交拋物線C1:y=
1
4
x2于點A、B,交拋物線C2:y=
1
9
x2于點C、D.原點O關于直線AB的對稱點為點Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m 1 2 3
AB
CD
      
     
由上表猜想:對任意m(m>0)均有
AB
CD
=
2
3
2
3
.請證明你的猜想.
【探究與應用】
(1)利用上面的結論,可得△AOB與△CQD面積比為
2
3
2
3

(2)當△AOB和△CQD中有一個是等腰直角三角形時,求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點A作y軸的平行線交拋物線C2于點E,過點D作y軸的平行線交拋物線C1于點F.在y軸上任取一點M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為
8
27
8
27

查看答案和解析>>

同步練習冊答案