【題目】已知直線y=kx(k≠0)經(jīng)過(guò)點(diǎn)(12,﹣5),將直線向上平移m(m>0)個(gè)單位,若平移后得到的直線與半徑為6⊙O相交(點(diǎn)O為坐標(biāo)原點(diǎn)),則m的取值范圍為_____

【答案】m<

【解析】

利用待定系數(shù)法解答,得出平移后得到的直線,求出A、B點(diǎn)的坐標(biāo),轉(zhuǎn)化為直角三角形中的問(wèn)題,再由直線與圓的位置關(guān)系的判定解答.

把點(diǎn)(12,﹣5)代入直線y=kx得,
﹣5=12k,
∴k=﹣;
由y=﹣x平移m(m>0)個(gè)單位后得到的直線l所對(duì)應(yīng)的函數(shù)關(guān)系式為y=﹣x+m(m>0),
設(shè)直線l與x軸、y軸分別交于點(diǎn)A、B,(如圖所示)
當(dāng)x=0時(shí),y=m;當(dāng)y=0時(shí),x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m,
在Rt△OAB中,AB=m,
過(guò)點(diǎn)O作OD⊥AB于D,
∵S△ABO=ODAB=OAOB,
OD=××,
∵m>0,解得OD=m,
由直線與圓的位置關(guān)系可知m<6,解得m<
故答案為:m<.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年12月16﹣18日,第二屆互聯(lián)網(wǎng)大會(huì)在浙江烏鎮(zhèn)勝利舉行,這說(shuō)明我國(guó)互聯(lián)網(wǎng)發(fā)展走到了世界的前列,尤其是電子商務(wù).據(jù)市場(chǎng)調(diào)查,天貓超市在銷售一種進(jìn)價(jià)為每件40元的護(hù)眼臺(tái)燈中發(fā)現(xiàn):每月銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖所示.

(1)當(dāng)銷售單價(jià)定為50元時(shí),求每月的銷售件數(shù);

(2)設(shè)每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)關(guān)于銷售單價(jià)x(元)的函數(shù)解析式;

(3)由于市場(chǎng)競(jìng)爭(zhēng)激烈,這種護(hù)眼燈的銷售單價(jià)不得高于75元,如果要每月獲得的利潤(rùn)不低于8000元,那么每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則AOB的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D在O的直徑AB的延長(zhǎng)線上,點(diǎn)C在O上,AC=CD,ACD=120°.

(1)求證:CD是O的切線;

(2)若O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A﹣1,0)、C0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點(diǎn)P與點(diǎn)C重合,點(diǎn)Q、E、F分別在BC、AB、AC上(點(diǎn)E與點(diǎn)A、點(diǎn)B均不重合).

(1)當(dāng)AE=8時(shí),求EF的長(zhǎng);

(2)設(shè)AEx,矩形EFPQ的面積為y

yx的函數(shù)關(guān)系式;

當(dāng)x為何值時(shí),y有最大值,最大值是多少?

(3)當(dāng)矩形EFPQ的面積最大時(shí),將矩形EFPQ以每秒1個(gè)單位的速度沿射線CB勻速向右運(yùn)動(dòng)(當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2+bx+1x軸分別交于A(1,0)B(3,0),與y軸交于點(diǎn)C

(1)求拋物線解析式;

(2)在直線BC上方的拋物線上有點(diǎn)P,使△PBC面積為1,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù) yx﹣3 與反比例函數(shù) y的圖象相交于點(diǎn) A(4,n),與 x 軸相交于點(diǎn) B

(1)求 n k 的值;

(2)以 AB 為邊作菱形 ABCD,使點(diǎn) C x 軸正半軸上,點(diǎn) D 在第一象限,求點(diǎn) D 的坐標(biāo);

(3)觀察反比例函數(shù)y=的圖象,當(dāng) y>﹣2 時(shí),請(qǐng)直接寫出自變量 x 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P,Q和圖形G,給出如下定義:點(diǎn)P,Q都在圖形G上,且將點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互換后得到點(diǎn)Q,則稱點(diǎn)PQ是圖形G的一對(duì)關(guān)聯(lián)點(diǎn).例如,點(diǎn)P1,2)和點(diǎn)Q2,1)是直線y=﹣x+3的一對(duì)關(guān)聯(lián)點(diǎn).

1)請(qǐng)寫出反比例函數(shù)y的圖象上的一對(duì)關(guān)聯(lián)點(diǎn)的坐標(biāo):   

2)拋物線yx2+bx+c的對(duì)稱軸為直線x1,與y軸交于點(diǎn)C0,﹣1).點(diǎn)A,B是拋物線yx2+bx+c的一對(duì)關(guān)聯(lián)點(diǎn),直線ABx軸交于點(diǎn)D1,0).求A,B兩點(diǎn)坐標(biāo).

3)⊙T的半徑為3,點(diǎn)MN是⊙T的一對(duì)關(guān)聯(lián)點(diǎn),且點(diǎn)M的坐標(biāo)為(1,m)(m1),請(qǐng)直接寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案