對于函數(shù)y=
3
x
,下列判斷正確的是(  )
A、圖象經(jīng)過點(diǎn)(-1,3)
B、圖象在第二、四象限
C、圖象所在的每個象限內(nèi),y隨x的增大而減小
D、不論x為何值時,總有y>0
分析:利用反比例函數(shù)的性質(zhì),k=3>0,圖象位于一、三象限,且在每個象限y隨x的增大而減小.
解答:解:函數(shù)y=
3
x
中,3>0,根據(jù)反比例函數(shù)的性質(zhì),
A、將(-1,3)代入函數(shù)y=
3
x
,得左邊=3,右邊=-3,左邊≠右邊,不成立;
B、圖象應(yīng)在一三象限;
C、圖象所在的每個象限內(nèi),y隨x的增大而減;
D、只有當(dāng)x<0時,y<0.
故選C.
點(diǎn)評:本題考查了反比例函數(shù)的性質(zhì),應(yīng)注意y=
k
x
中k的取值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道,對于二次函數(shù)y=a(x+m)2+k的圖象,可由函數(shù)y=ax2的圖象進(jìn)行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數(shù)y=ax2為“基本函數(shù)”,而稱由它平移得到的二次函數(shù)y=a(x+m)2+k為“基本函數(shù)”y=ax2的“朋友函數(shù)”.左右、上下平移的路徑稱為朋友路徑,對應(yīng)點(diǎn)之間的線段距離
m2+k2
稱為朋友距離.
由此,我們所學(xué)的函數(shù):二次函數(shù)y=ax2,函數(shù)y=kx和反比例函數(shù)y=
k
x
都可以作為“基本函數(shù)”,并進(jìn)行向左或向右平移一次、再向上或向下平移一次得到相應(yīng)的“朋友函數(shù)”.
如一次函數(shù)y=2x-5是基本函數(shù)y=2x的朋友函數(shù),由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個單位,再向下平移3個單位,朋友距離=
12+32
=
10

(1)探究一:小明同學(xué)經(jīng)過思考后,為函數(shù)y=2x-5又找到了一條朋友路徑為由基本函數(shù)y=2x先向
 
,再向下平移7單位,相應(yīng)的朋友距離為
 

(2)探究二:已知函數(shù)y=x2-6x+5,求它的基本函數(shù),朋友路徑,和相應(yīng)的朋友距離.
(3)探究三:為函數(shù)y=
3x+4
x+1
和它的基本函數(shù)y=
1
x
,找到朋友路徑,并求相應(yīng)的朋友距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•白下區(qū)二模)對于反比例函數(shù)y=-
3
x
,下列說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:東陽市模擬 題型:解答題

我們知道,對于二次函數(shù)y=a(x+m)2+k的圖象,可由函數(shù)y=ax2的圖象進(jìn)行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數(shù)y=ax2為“基本函數(shù)”,而稱由它平移得到的二次函數(shù)y=a(x+m)2+k為“基本函數(shù)”y=ax2的“朋友函數(shù)”.左右、上下平移的路徑稱為朋友路徑,對應(yīng)點(diǎn)之間的線段距離
m2+k2
稱為朋友距離.
由此,我們所學(xué)的函數(shù):二次函數(shù)y=ax2,函數(shù)y=kx和反比例函數(shù)y=
k
x
都可以作為“基本函數(shù)”,并進(jìn)行向左或向右平移一次、再向上或向下平移一次得到相應(yīng)的“朋友函數(shù)”.
如一次函數(shù)y=2x-5是基本函數(shù)y=2x的朋友函數(shù),由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個單位,再向下平移3個單位,朋友距離=
12+32
=
10

(1)探究一:小明同學(xué)經(jīng)過思考后,為函數(shù)y=2x-5又找到了一條朋友路徑為由基本函數(shù)y=2x先向______,再向下平移7單位,相應(yīng)的朋友距離為______.
(2)探究二:已知函數(shù)y=x2-6x+5,求它的基本函數(shù),朋友路徑,和相應(yīng)的朋友距離.
(3)探究三:為函數(shù)y=
3x+4
x+1
和它的基本函數(shù)y=
1
x
,找到朋友路徑,并求相應(yīng)的朋友距離.

查看答案和解析>>

同步練習(xí)冊答案