【題目】已知函數(shù)(,為常數(shù))的圖象經(jīng)過(guò)點(diǎn).
(1)求,滿足的關(guān)系式;
(2)設(shè)該函數(shù)圖象的頂點(diǎn)坐標(biāo)是,當(dāng)的值變化時(shí),求關(guān)于的函數(shù)解析式;
(3)若該函數(shù)的圖象不經(jīng)過(guò)第三象限,當(dāng)時(shí),函數(shù)的最大值與最小值之差為16,求的值.
【答案】(1)c=2b(2)(3)2或6
【解析】
(1)把點(diǎn)代入函數(shù)即可得到結(jié)論;
(2)根據(jù)頂點(diǎn)坐標(biāo)即可求解;
(3)把函數(shù)化為,根據(jù)圖像不經(jīng)過(guò)第三象限進(jìn)行分類(lèi)討論進(jìn)行求解.
(1)將點(diǎn)代入,
得,
∴;
(2),,
∴,
∴,
(3),
對(duì)稱軸,
當(dāng)時(shí),,函數(shù)不經(jīng)過(guò)第三象限,則;
此時(shí),當(dāng)時(shí),函數(shù)最小值是0,最大值是25,
∴最大值與最小值之差為25;(舍去)
當(dāng)時(shí),,函數(shù)不經(jīng)過(guò)第三象限,則,
∴,
∴,
當(dāng)時(shí),函數(shù)有最小值,
當(dāng)時(shí),函數(shù)有最大值,
當(dāng)時(shí),函數(shù)有最大值;
函數(shù)的最大值與最小值之差為16,
當(dāng)最大值時(shí),,
∴或,
∵,
∴;
當(dāng)最大值時(shí),,
∴或,
∵,
∴;
綜上所述或;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,為的直徑,弦于點(diǎn),在的延長(zhǎng)線上取一點(diǎn),與相切于點(diǎn),連接交于點(diǎn).
(1)如圖①,若,求和的大;
(2)如圖②,若為半徑的中點(diǎn),,且,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=x2+2mx(m為常數(shù)且m≠0).
(1)判斷該拋物線與x軸的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.
(2)若點(diǎn)A(-n+5,0),B(n-1,0)在該拋物線上,點(diǎn)M為拋物線的頂點(diǎn),求△ABM的面積.
(3)若點(diǎn)(2,p),(3,g),(4,r)均在該拋物線上,且p<g<r,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),頂點(diǎn)坐標(biāo)且開(kāi)口向下,則下列結(jié)論:①拋物線經(jīng)過(guò)點(diǎn);②;③關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根;④對(duì)于任意實(shí)數(shù),總成立。其中結(jié)論正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,矩形中,,點(diǎn)分別在邊上,直線交矩形對(duì)角線于點(diǎn),將沿直線翻折,點(diǎn)落在點(diǎn)處,且點(diǎn)在射線上。
Ⅰ.如圖①,當(dāng)時(shí),①求證;②求的長(zhǎng);
Ⅱ.請(qǐng)寫(xiě)出線段的長(zhǎng)的取值范圍,及當(dāng)的長(zhǎng)最大時(shí)的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=2,AD=4,對(duì)角線AC,BD相交于點(diǎn)O,且E,F,G,H分別是AO,BO,CO,DO的中點(diǎn),則下列說(shuō)法正確的是( )
A.EH=HGB.四邊形EFGH是平行四邊形
C.AC⊥BDD.的面積是的面積的2倍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊中,AB=6,點(diǎn)D在BC上,BD=4,點(diǎn)E為邊AC上一動(dòng)點(diǎn)(不與點(diǎn)C重合),關(guān)于DE的軸對(duì)稱圖形為.
(1)當(dāng)點(diǎn)F在AC上時(shí),求證:DF//AB;
(2)設(shè)的面積為S1,的面積為S2,記S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)B,F,E三點(diǎn)共線時(shí)。求AE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線過(guò)點(diǎn),且與直線交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為.
(1)求拋物線的解析式;
(2)點(diǎn)D為拋物線上位于直線上方的一點(diǎn),過(guò)點(diǎn)D作軸交直線于點(diǎn)E,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)線段的長(zhǎng)度最大時(shí),求的最小值;
(3)設(shè)點(diǎn)M為拋物線的頂點(diǎn),在y軸上是否存在點(diǎn)Q,使?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度得到△AED,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別是E、D.
(1)如圖1,當(dāng)點(diǎn)E恰好在AC上時(shí),求∠CDE的度數(shù);
(2)如圖2,若=60°時(shí),點(diǎn)F是邊AC中點(diǎn),求證:四邊形BFDE是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com