【題目】如圖,已知中,厘米,厘米,點為的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,與是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等, 與是否可能全等?若能,求出全等時點Q的運動速度和時間;若不能,請說明理由.
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿三邊運動,求經(jīng)過多長時間點P與點Q第一次在的哪條邊上相遇?
【答案】(1)①,理由見解析;②秒,厘米/秒;(2)經(jīng)過秒,點與點第一次在邊上相遇
【解析】
(1)①根據(jù)“路程=速度×?xí)r間”可得,然后證出,根據(jù)等邊對等角證出,最后利用SAS即可證出結(jié)論;
②根據(jù)題意可得,若與全等,則,根據(jù)“路程÷速度=時間”計算出點P的運動時間,即為點Q運動的時間,然后即可求出點Q的速度;
(2)設(shè)經(jīng)過秒后點與點第一次相遇,根據(jù)題意可得點與點第一次相遇時,點Q比點P多走AB+AC=20厘米,列出方程,即可求出相遇時間,從而求出點P運動的路程,從而判斷出結(jié)論.
解:(1)①∵秒,
∴厘米,
∵厘米,點為的中點,
∴厘米.
又∵厘米,
∴厘米,
∴.
又∵,
∴,
在△BPD和△CQP中
∴.
②∵,
∴,
又∵與全等,
,
則,
∴點,點運動的時間秒,
∴厘米/秒.
(2)設(shè)經(jīng)過秒后點與點第一次相遇,
∵
∴點與點第一次相遇時,點Q比點P多走AB+AC=20厘米
∴,
解得秒.
∴點共運動了厘米.
∵,
∴點、點在邊上相遇,
∴經(jīng)過秒,點與點第一次在邊上相遇.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級準備購買一批筆記本獎勵優(yōu)秀學(xué)生,在購買時發(fā)現(xiàn),每本筆記本可以打九折,用360元錢購買的筆記本,打折后購買的數(shù)量比打折前多10本.
(1)求打折前每本筆記本的售價是多少元?
(2)由于考慮學(xué)生的需求不同,學(xué)校決定購買筆記本和筆袋共90件,筆袋每個原售價為6元,兩種物品都打九折,若購買總金額不低于360元,且不超過365元,問有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列四項調(diào)查中,方式正確的是
A. 了解本市中學(xué)生每天學(xué)習(xí)所用的時間,采用全面調(diào)查的方式
B. 為保證運載火箭的成功發(fā)射,對其所有的零部件采用抽樣調(diào)查的方式
C. 了解某市每天的流動人口數(shù),采用全面調(diào)查的方式
D. 了解全市中學(xué)生的視力情況,采用抽樣調(diào)查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, AB∥CD, AC∥BD, AD與BC交于O, AE⊥BC于E, DF⊥BC于F, 那么圖中全等的三角形有 ( )
A.5對B.6對C.7對D.8對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,將兩個完全相同的三角形紙片 ABC 和 DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)如圖2,固定△ABC,使△DEC 繞點 C 旋轉(zhuǎn),當點 D 恰好落 在 AB 邊上時,
①填空:線段 DE 與 AC 的位置關(guān)系是 ;
②設(shè)△BDC 的面積為 S1,△AEC 的面積為 S2,求證:S1=S2
(2)當△DEC 繞點 C 旋轉(zhuǎn)到如圖 3 所示的位置時,小明猜想(1) 中 S1 與 S2 的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE 邊上的高,請你證明小明的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市為了美化環(huán)境,計劃在如圖所示的三角形空地上種植草皮,已知這種草皮每平方米售價為元,則購買這種草皮至少需要______元.(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是單位1,△ABC的三個頂點都在格點(即這些小正方形的頂點)上,且它們的坐標分別是A(2,3),B(5,1),C(1,3),結(jié)合所給的平面直角坐標系,解答下列問題:
(1)請在如圖坐標系中畫出△ABC;
(2)畫出△ABC關(guān)于x軸對稱的△A′B′C′,并寫出△A′B′C′各頂點坐標;
(3)在x軸上找一點P,使PA+PB的值最小。請畫出點P,并求出點P坐標。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=8,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個數(shù)有( )
①-a一定是負數(shù);②|-a|一定是正數(shù);③倒數(shù)等于它本身的數(shù)是±1;
④絕對值等于它本身的數(shù)是1;⑤兩個有理數(shù)的和一定大于其中每一個加數(shù);⑥若 ,則a=b.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com