拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求此拋物線的解析式;
(2)拋物線上是否存在點P,使,若存在,求出P點坐標;若不存在,請說明理由.
(1)y=-x2+2x+3;(2) P坐標為(,)、(,);(,);
(,).
解析試題分析:(1)設出拋物線的頂點形式為y=a(x-1)2+4,將A坐標代入求出a的值,即可確定出拋物線解析式;
(2)存在,設出P(a,-a2+2a+3),直線AB解析式為y=kx+b,將A與B坐標代入求出k與b的值,確定出直線AB解析式,根據三角形ABP面積為三角形ABC面積的一半,由兩三角形都以AB為底邊,得到C到直線AB的距離為P到直線AB距離的2倍,利用點到直線的距離公式列出關于a的方程,求出方程的解得到a的值,即可確定出滿足題意P的坐標.
試題解析:(1)設拋物線的頂點形式為y=a(x-1)2+4,
將A(3,0)代入得:0=4a+4,即a=-1,
則拋物線解析式為y=-(x-1)2+4=-x2+2x+3;
(2)存在這樣的P點,
設P(a,-a2+2a+3),
設直線AB解析式為y=kx+b,
將A(3,0),B(0,3)代入得:
,
解得:,
∴直線AB解析式為y=-x+3,
∵S△ABP=S△ABC,且兩三角形都以AB為底邊,
∴P到直線AB的距離等于C到直線AB距離的,
∵C(1,4)到直線AB的距離d=,
∴P到直線AB的距離d=,
即|-a2+3a|=1,
整理得:a2-3a-1=0或a2-3a+1=0,
解得:a=或a=
當a=時,-a2+2a+3=-;
當a=時,-a2+2a+3=-;
當a=時,-a2+2a+3=-;
當a=時,-a2+2a+3=-.
則滿足題意的P坐標為(,)、(,);(,);
(,).
考點: 1.待定系數法求二次函數解析式;2.二次函數的性質.
科目:初中數學 來源: 題型:解答題
如圖,已知直線y=x與拋物線y=x2交于A、B兩點.
(1)求交點A、B的坐標;
(2)記一次函數y=x的函數值為y1,二次函數y=x2的函數值為y2.若y1>y2,求x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
(12分)如圖,在直角坐標系中,已知點A(0,2),點B(-2,0),過點B和線段OA的中點C作直線BC,以線段BC為邊向上作正方形BCDE.
(1)填空:點D的坐標為 ,點E的坐標為 ;
(2)若拋物線y=aa2+ba+c(a≠0)經過A,D,E三點,求該拋物線的解析式;
(3)若正方形和拋物線均以每秒個單位長度的速度沿射線BC同時向上平移,直至正方形的頂點E落在y軸上時,正方形和拋物線均停止運動.
① 在運動過程中,設正方形落在y軸右側部分的面積為s,求s關于平移時間t(秒)的函數關系式,并寫出相應自變量t的取值范圍;
② 運動停止時,請直接寫出此時的拋物線的頂點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知直線y=x+6交x軸于點A,交y軸于點C,經過A和原點O的拋物線y=ax2+bx(a<0)的頂點B在直線AC上.
(1)求拋物線的函數關系式;
(2)以B點為圓心,以AB為半徑作⊙B,將⊙B沿x軸翻折得到⊙D,試判斷直線AC與⊙D的位置關系,并說明理由;
(3)若E為⊙B優(yōu)弧上一動點,連結AE、OE,問在拋物線上是否存在一點M,使∠MOA︰∠AEO=2︰3,若存在,試求出點M的坐標;若不存在,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
某商店進了一批服裝,每件成本50元,如果按每件60元出售,可銷售800件,如果每件提價5元出售,其銷量將減少100件。
(1)求售價為70元時的銷售量及銷售利潤;
(2)求銷售利潤y(元)與售價x(元)之間的函數關系,并求售價為多少元時獲得最大利潤;
(3)如果商店銷售這批服裝想獲利12000元,那么這批服裝的定價是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知一個二次函數的頂點A的坐標為(1,0),且圖像經過點B(2,3).
(1)求這個二次函數的解析式.
(2)設圖像與y軸的交點為C,記,試用表示(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知二次函數.
(1)在給定的直角坐標系中,畫出這個函數的圖象;
(2)根據圖象,寫出當y<0時,x的取值范圍;
(3)若將此圖象沿x軸向右平移3個單位,請寫出平移后圖象所對應的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,﹣),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
(1)求拋物線的解析式及A,B兩點的坐標;
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請說明理由;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com