【題目】現(xiàn)有一個(gè)種植總面積為540 m2的長(zhǎng)方形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過(guò)14(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤(rùn)分別如下:

(1)若設(shè)草莓共種植了x壟,請(qǐng)說(shuō)明共有幾種種植方案,分別是哪幾種;

(2)在這幾種種植方案中,哪種方案獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】(1)見(jiàn)解析;(2)方案一即種植西紅柿和草莓各12壟,獲得的利潤(rùn)最大,最大利潤(rùn)是3072元.

【解析】

(1)列出一元一次不等式組,求出草莓種植壟數(shù)的取值范圍,就可以找出方案;

(2)分別計(jì)算3種方案的利潤(rùn),進(jìn)行比較,可以找出答案.

解:(1)根據(jù)題意可知西紅柿種了(24-x)壟,則15x+30(24-x)≤540,解得x≥12.

又因?yàn)?/span>x≤14,且x是正整數(shù),

所以x的值為12,13,14.

故共有三種種植方案:

方案一:種植草莓12壟,種植西紅柿12壟;

方案二:種植草莓13壟,種植西紅柿11壟;

方案三:種植草莓14壟,種植西紅柿10壟.

(2)方案一獲得的利潤(rùn)為12×50×1.6+12×160×1.1=3072();

方案二獲得的利潤(rùn)為13×50×1.6+11×160×1.1=2976();

方案三獲得的利潤(rùn)為14×50×1.6+10×160×1.1=2880().

由計(jì)算可知,方案一即種植西紅柿和草莓各12壟,獲得的利潤(rùn)最大,最大利潤(rùn)是3072元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分) 甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分. 如圖,甲 在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式 ,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度1.55m.

(1)當(dāng)a= 時(shí),①求h的值.②通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng).
(2)若甲發(fā)球過(guò)網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為 m的Q處時(shí),乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=6,AB=10,D為BC邊的中點(diǎn),以AD上一點(diǎn)O為圓心的⊙O和AB、BC均相切,則⊙O的半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊的邊長(zhǎng)為2,現(xiàn)將等邊放置在平面直角坐標(biāo)系中,點(diǎn)B和原點(diǎn)重合,點(diǎn)Cx軸正方向上,直線交x軸于點(diǎn)D,交y軸于點(diǎn)E,且如圖,現(xiàn)將等邊從圖1的位置沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng),邊AB、AC分別與線段DE交于點(diǎn)G、如圖,同時(shí)點(diǎn)P的頂點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿折線運(yùn)動(dòng)當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí)即停止活動(dòng),也隨之停止移動(dòng),設(shè)平移的時(shí)間為

試求直線DE的解析式;

當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí),設(shè)點(diǎn)P與點(diǎn)H的距離為y,求yt的函數(shù)關(guān)系式,并寫(xiě)出定義域;

當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),中恰好有一個(gè)角的度數(shù)為,請(qǐng)直接寫(xiě)出t的值,不必寫(xiě)過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在甲、乙兩名同學(xué)中選拔一人參加襄陽(yáng)廣播電臺(tái)舉辦“國(guó)學(xué)風(fēng),少年頌”襄陽(yáng)首屆少年兒童經(jīng)典誦讀大賽.在相同的測(cè)試條件下,兩人3次測(cè)試成績(jī)(單位:分)如下:甲:79,86,82;乙:88,79,90.從甲、乙兩人3次的成績(jī)中各隨機(jī)抽取一次成績(jī)進(jìn)行分析,求抽到的兩個(gè)人的成績(jī)都大于80分的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校去年在某商場(chǎng)購(gòu)買甲、乙兩種不同足球,購(gòu)買甲種足球共花費(fèi)2400元,購(gòu)買乙種足球共花費(fèi)1600元,購(gòu)買甲種足球數(shù)量是購(gòu)買乙種足球數(shù)量的2倍.且購(gòu)買一個(gè)乙種足球比購(gòu)買一個(gè)甲種足球多花20元.
(1)求購(gòu)買一個(gè)甲種足球、一個(gè)乙種足球各需多少元;
(2)今年學(xué)校為編排“足球操”,決定再次購(gòu)買甲、乙兩種足球共50個(gè).如果兩種足球的單價(jià)沒(méi)有改變,而此次購(gòu)買甲、乙兩種足球的總費(fèi)用不超過(guò)3500元,那么這所學(xué)校最少可購(gòu)買多少個(gè)甲種足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知相交直線AB和CD及另一直線MN,如果要在MN上找出與AB,CD距離相等的點(diǎn),則這樣的點(diǎn)至少有_____個(gè),最多有_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一面積為5 的等腰三角形,它的一個(gè)內(nèi)角是30°,則以它的腰長(zhǎng)為邊的正方形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°

(1) 求證:四邊形ABCD是矩形

(2) DE⊥ACBCE,∠ADB∶∠CDB=2∶3,則∠BDE的度數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案