【題目】如圖,已知直線與拋物線相交于,兩點,拋物線交軸于點,交軸正半軸于點,拋物線的頂點為.
(1)求拋物線的解析式;
(2)設(shè)點為直線下方的拋物線上一動點,當(dāng)的面積最大時,求的面積及點的坐標(biāo);
(3)若點為軸上一動點,點在拋物線上且位于其對稱軸右側(cè),當(dāng)與相似時,求點的坐標(biāo).
【答案】(1)y=;(2),;(3)或或或
【解析】
(1)將點代入中求出點B坐標(biāo),將點A,B,C坐標(biāo)代入中求解即可;
(2)如圖所示作輔助線,設(shè)點P,點E,表達(dá)出EP的長度,將△ABP分割成兩個三角形進(jìn)行計算,再利用二次函數(shù)的性質(zhì)求最大值即可;
(3)通過坐標(biāo)得出△MAD是等腰直角三角形,從而判斷也是等腰直角三角形,再對進(jìn)行分類討論.
解:(1)將點代入中得,
∴點,
將點、、代入中得
,解得:,
∴
(2)如圖①,過點P作EP⊥x軸,交AB于點E,則設(shè)點P,點E,
∴EP=,
∴
∵,開口向下,
∴當(dāng)時,最大,
此時P
(3)在中,令y=0得,
解得,
∴點D(3,0)
又∵M(1,-2)
∴AD=4,AM=DM=,
∵
∴△MAD是等腰直角三角形,
若與相似,則也是等腰直角三角形,
有以下情況:
①當(dāng)∠MQN=90°,且點N與點D重合時,如下圖所示,滿足要求,此時N(3,0)
②當(dāng)∠MQN=90°,點N在x軸上方時,如下圖所示,作NF⊥x軸,ME⊥于x軸,
則△NFQ≌△QEM(AAS),
∴EM=FQ=2,EQ=NF
設(shè) ( ),則
∴EQ=t+2-1=t+1
∴
解得:,(舍去),
∴N
③當(dāng)∠QMN=90°時, △與重合,N(3,0),
④當(dāng)∠QNM=90°時,且點N在x軸上方時,如圖所示作NH⊥x軸,NF⊥直線x=1
則△QHN≌△MFN,
∴FN=NH
設(shè),則,
∴
解得:(舍去)
此時N
⑤當(dāng)∠QNM=90°時,且點N在x軸下方時,如圖所示作NP⊥x軸,NG⊥直線x=1,
則△QPN≌△NGM
∴PN=GN
設(shè),則, ,
∴
解得(舍去)
此時N
綜上所述,或或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂場新推出了一個“極速飛車”的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度.其中斜坡軌道BC的坡度(或坡比)為i=1:2,BC=12米,CD=8米,∠D=36°,(其中點A、B、C、D均在同一平面內(nèi))則垂直升降電梯AB的高度約為( 。┟祝ň_到0.1米,參考數(shù)據(jù):tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)
A.5.6B.6.9C.11.4D.13.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為改善生態(tài)環(huán)境,建設(shè)美麗鄉(xiāng)村,某村規(guī)劃將一塊長18米,寬10米的矩形場地建設(shè)成綠化廣場,如圖,內(nèi)部修建三條寬相等的小路,其中一條路與廣場的長平行,另兩條路與廣場的寬平行,其余區(qū)域種植綠化,使綠化區(qū)域的面積為廣場總面積的80%.
(1)求該廣場綠化區(qū)域的面積;
(2)求廣場中間小路的寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于,兩點,與軸分別交于兩點,且.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點與點關(guān)于軸對稱,連接,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解“校園文明監(jiān)督崗”的值圍情況,對全校各班級進(jìn)行了抽樣調(diào)查,過程如下:
收集數(shù)據(jù):從三個年級中隨機抽取了20個班級,學(xué)校對各班的評分如下:
92 71 89 82 69 82 96 83 77 83
80 82 66 73 82 78 92 70 74 59
整理、描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
分?jǐn)?shù)段 | |||||
班級數(shù) | 1 | 2 | a | 8 | b |
說明:成績90分及以上為優(yōu)秀,分為良好,分為合格,60分以下為不合格
分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差如下表,繪制扇形統(tǒng)計圖:
平均數(shù) | 中位數(shù) | 眾數(shù) | 極差 |
79 | c | 82 | d |
請根據(jù)以上信息解答下列問題:
填空:______,______,______,______.
若我校共120個班級,估計得分為優(yōu)秀的班級有多少個?
為調(diào)動班級積極性,決定制定一個獎勵標(biāo)準(zhǔn)分,凡到達(dá)或超過這個標(biāo)準(zhǔn)分的班級都將受到獎勵如果要使得半數(shù)左右的班級都能獲獎,獎勵標(biāo)準(zhǔn)分應(yīng)定為多少分?并簡述其理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查學(xué)生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學(xué)生進(jìn)行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績的頻數(shù)分布統(tǒng)計表如下:
成績x 學(xué)校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(說明:成績80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)
b.甲校成績在這一組的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中n的值;
(2)在此次測試中,某學(xué)生的成績是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是_____________校的學(xué)生(填“甲”或“乙”),理由是__________;
(3)假設(shè)乙校800名學(xué)生都參加此次測試,估計成績優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=∠DCB,添加以下條件,不能判定△ABC≌△DCB的是( 。
A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC內(nèi)接于⊙O,AD⊥BC于D,BE⊥AC于E,AD、BE交于點H.
(1)如圖1,連接OA、OC,若BH=AC,求∠AOC的度數(shù).
(2)如圖2延長BE交⊙O于點G,求證:HE=GE;
(3)如圖3,在(2)的條件下,P是弦AC上一點,過點P作PM∥BC交AB于點M,若∠PCD+2∠PDC=90°,BM=,AM=,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將2019個邊長為1的正方形按如圖所示的方式排列,點A,A1,A2,A3…A2019和點M,M1,M2…M2018是正方形的頂點,連接AM1,AM2,AM3…AM2018分別交正方形的邊A1M,A2M1,A3M2…A2018M2017于點N1,N2,N3…N2018,四邊形M1N1A1A2的面積是S1,四邊形M2N2A2A3的面積是S2,…,則S2018為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com