【題目】甲、乙、丙3人聚會(huì),每人帶了一件禮物,將這3件禮物分別放在3個(gè)完全相同的盒子里,每人隨機(jī)抽取一個(gè)禮盒(裝有禮物的盒子)
(1)下列事件是必然事件的是 A 乙沒(méi)有抽到自己帶來(lái)的禮物B 乙恰好抽到自己帶來(lái)的禮物C 乙抽到一件禮物D 只有乙抽到自己帶來(lái)的禮物
(2)甲、乙、丙3人抽到的都不是自己帶來(lái)的禮物(記為事件A),請(qǐng)列出事件A的所有可能的結(jié)果,并求事件A的概率.

【答案】
(1)C
(2)設(shè)甲、乙、丙帶的禮物分別記為A、B、C,

根據(jù)題意畫(huà)出樹(shù)狀圖如下:

一共有6種情況,其中甲、乙、丙3人抽到的都不是自己帶來(lái)的禮物的情況共有(B、C、A)和(C、A、B)2種,

∴P(事件A)= =


【解析】解:(1)A 乙沒(méi)有抽到自己帶來(lái)的禮物是隨機(jī)事件; B 乙恰好抽到自己帶來(lái)的禮物是隨機(jī)事件;
C 乙抽到一件禮物是必然事件;
D 只有乙抽到自己帶來(lái)的禮物隨機(jī)事件;
故選:C;
【考點(diǎn)精析】通過(guò)靈活運(yùn)用隨機(jī)事件和列表法與樹(shù)狀圖法,掌握在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于S的隨機(jī)事件;當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹(shù)狀圖法求概率即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,這是一把可調(diào)節(jié)座椅的側(cè)面示意圖,已知頭枕上的點(diǎn)A到調(diào)節(jié)器點(diǎn)O處的距離為80cm,AO與地面垂直,現(xiàn)調(diào)整靠背,把OA繞點(diǎn)O旋轉(zhuǎn)35°到OA′處,求調(diào)整后點(diǎn)A′比調(diào)整前點(diǎn)A的高度降低了多少厘米(結(jié)果取整數(shù))? (參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).

幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對(duì)于它們的性質(zhì)都非常熟悉,生活中還有一種特殊的四邊形﹣﹣箏形.所謂箏形,它的形狀與我們生活中風(fēng)箏的骨架相似.
定義:兩組鄰邊分別相等的四邊形,稱(chēng)之為箏形,如圖,四邊形ABCD是箏形,其中AB=AD,CB=CD
判定:①兩組鄰邊分別相等的四邊形是箏形
②有一條對(duì)角線垂直平分另一條對(duì)角線的四邊形是箏形
顯然,菱形是特殊的箏形,就一般箏形而言,它與菱形有許多相同點(diǎn)和不同點(diǎn)

如果只研究一般的箏形(不包括菱形),請(qǐng)根據(jù)以上材料完成下列任務(wù):
如果只研究一般的箏形(不包括菱形),請(qǐng)根據(jù)以上材料完成下列任務(wù):
(1)請(qǐng)說(shuō)出箏形和菱形的相同點(diǎn)和不同點(diǎn)各兩條;
(2)請(qǐng)仿照?qǐng)D1的畫(huà)法,在圖2所示的8×8網(wǎng)格中重新設(shè)計(jì)一個(gè)由四個(gè)全等的箏形和四個(gè)全等的菱形組成的新圖案,具體要求如下:
①頂點(diǎn)都在格點(diǎn)上;
②所設(shè)計(jì)的圖案既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形;
③將新圖案中的四個(gè)箏形都圖上陰影(建議用一系列平行斜線表示陰影).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系第一象限內(nèi),直線y=x與直線y=2x的內(nèi)部作等腰Rt△ABC,是∠ABC=90°,邊BC∥x軸,AB∥y軸,點(diǎn)A(1,1)在直線y=x上,點(diǎn)C在直線y=2x上:CB的延長(zhǎng)線交直線y=x于點(diǎn)A1 , 作等腰Rt△A1B1C1 , 是∠A1B1C1=90°,B1C1∥x軸,A1B1∥y軸,點(diǎn)C1在直線y=2x上…按此規(guī)律,則等腰Rt△AnBnCn的腰長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)、B(5,0)兩點(diǎn),與y軸交于C點(diǎn),D為拋物線的頂點(diǎn),E為拋物線上一點(diǎn),且C、E關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),分別作直線AE、DE.

(1)求此二次函數(shù)的關(guān)系式;
(2)在圖1中,直線DE上有一點(diǎn)Q,使得△QCO≌△QBO,求點(diǎn)Q的坐標(biāo);
(3)如圖2,直線DE與x軸交于點(diǎn)F,點(diǎn)M為線段AF上一個(gè)動(dòng)點(diǎn),有A向F運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,運(yùn)動(dòng)到F處停止,點(diǎn)N由F處出發(fā),沿射線FE方向運(yùn)動(dòng),速度為每秒 個(gè)單位長(zhǎng)度,M、N兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)M停止時(shí)點(diǎn)N同時(shí)停止運(yùn)動(dòng)坐標(biāo)平面內(nèi)有一個(gè)動(dòng)點(diǎn)P,t為何值時(shí),以P、M、N、F為頂點(diǎn)的四邊形是特殊的平行四邊形.請(qǐng)直接寫(xiě)出t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=﹣x2+bx+3與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C.

(1)求拋物線的解析式.
(2)直線y=kx+3k經(jīng)過(guò)點(diǎn)B,與y軸的負(fù)半軸交于點(diǎn)D,點(diǎn)P為第二象限內(nèi)拋物線上一點(diǎn),連接PD,射線PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)與線段BD交于點(diǎn)E,且∠EPD=2∠PDC,∠EPD的平分線交線段BD于點(diǎn)H,∠BEP+∠BDP=90°
①若四邊形PHDC是平行四邊形,求點(diǎn)P的坐標(biāo);
②過(guò)點(diǎn)E作EF⊥PD,交PD于點(diǎn)G,交y軸于點(diǎn)F,已知PF=3 ,求直線PF的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王華、張偉兩位同學(xué)分別將自己10次數(shù)學(xué)自我檢測(cè)的成績(jī)繪制成如下統(tǒng)計(jì)圖:

(1)根據(jù)圖中提供的數(shù)據(jù)列出如下統(tǒng)計(jì)表:

平均成績(jī)(分)

中位數(shù)(分)

眾數(shù)(分)

方差(S2

王華

80

b

80

d

張偉

a

85

c

260

則a= , b= , c= , d= ,
(2)將90分以上(含90分)的成績(jī)視為優(yōu)秀,則優(yōu)秀率高的是
(3)現(xiàn)在要從這兩個(gè)同學(xué)選一位去參加數(shù)學(xué)競(jìng)賽,你可以根據(jù)以上的數(shù)據(jù)給老師哪些建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線PA切⊙O于點(diǎn)A,連接PO.

(1)在PO的上方作射線PC,使∠OPC=∠OPA(用尺規(guī)在原圖中作,保留痕跡,不寫(xiě)作法),并證明:PC是⊙O的切線;
(2)在(1)的條件下,若PC切⊙O于點(diǎn)B,AB=AP=4,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃用這兩種原料全部生產(chǎn)A、B兩種產(chǎn)品共50件,生產(chǎn)A、B兩種產(chǎn)品與所需原料情況如下表所示:

原料型號(hào)

甲種原料(千克)

乙種原料(千克)

A產(chǎn)品(每件)

9

3

B產(chǎn)品(每件)

4

10


(1)該工廠生產(chǎn)A、B兩種產(chǎn)品有哪幾種方案?
(2)若生成一件A產(chǎn)品可獲利80元,生產(chǎn)一件B產(chǎn)品可獲利120元,怎樣安排生產(chǎn)可獲得最大利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案