【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).
【答案】
(1)解:因?yàn)槎魏瘮?shù)y=x2+bx+c的圖象經(jīng)過A(﹣3,0),D(﹣2,﹣3),所以 ,
解得 .
所以一次函數(shù)解析式為y=x2+2x﹣3
(2)解:∵拋物線對稱軸x=﹣1,D(﹣2,﹣3),C(0,﹣3),
∴C、D關(guān)于x軸對稱,連接AC與對稱軸的交點(diǎn)就是點(diǎn)P,
此時PA+PD=PA+PC=AC= = =3
(3)解:設(shè)點(diǎn)P坐標(biāo)(m,m2+2m﹣3),
令y=0,x2+2x﹣3=0,
x=﹣3或1,
∴點(diǎn)B坐標(biāo)(1,0),
∴AB=4
∵S△PAB=6,
∴ 4|m2+2m﹣3|=6,
∴m2+2m﹣6=0,m2+2m=0,
∴m=0或﹣2或1+ 或1﹣ .
∴點(diǎn)P坐標(biāo)為(0,﹣3)或(﹣2,﹣3)或(1+ ,3)或(1﹣ ,3).
【解析】(1)把A、D兩點(diǎn)坐標(biāo)代入二次函數(shù)y=x2+bx+c,解方程組即可解決.(2)利用軸對稱找到點(diǎn)P,用勾股定理即可解決.(3)根據(jù)三角形面積公式,列出方程即可解決.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最。咳舸嬖,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜邊AB的垂直平分線交AC于點(diǎn)D,點(diǎn)F在AC上,點(diǎn)E在BC的延長線上,CE=CF,連接BF,DE.線段DE和BF在數(shù)量和位置上有什么關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時,y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個根;
④當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)的坐標(biāo)為,點(diǎn)在軸正半軸上,點(diǎn)在第三象限的雙曲線上,過點(diǎn)作軸交雙曲線于點(diǎn),連接,則的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,拋物線y=x2﹣2mx+m2+m的頂點(diǎn)為A,與y軸交于點(diǎn)B.當(dāng)拋物線不經(jīng)過坐標(biāo)原點(diǎn)時,分別作點(diǎn)A、B關(guān)于原點(diǎn)的對稱點(diǎn)C、D,連結(jié)AB、BC、CD、DA.
(1)分別用含有m的代數(shù)式表示點(diǎn)A、B的坐標(biāo).
(2)判斷點(diǎn)B能否落在y軸負(fù)半軸上,并說明理由.
(3)連結(jié)AC,設(shè)l=AC+BD,求l與m之間的函數(shù)關(guān)系式.
(4)過點(diǎn)A作y軸的垂線,交y軸于點(diǎn)P,以AP為邊作正方形APMN,MN在AP上方,如圖②,當(dāng)正方形APMN與四邊形ABCD重疊部分圖形為四邊形時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這是一個供滑板愛好者使用的U型池,該U型池可以看成是一個長方體去掉一個“半圓柱”,中間可供滑行部分的截面是半徑為4 m的半圓,其邊緣AB=CD=20 m,點(diǎn)E在CD上,CE=2 m.一滑板愛好者從A點(diǎn)滑到E點(diǎn),則他滑行的最短路程約為____________(邊緣部分的厚度忽略不計,結(jié)果保留整數(shù).提示:482≈222).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度數(shù);
(2)延長AC至E,使CE=AC,求證:DA=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,后解答:
像上述解題過程中,相乘,積不含有二次根式,我們可將這兩個式子稱為互為有理化因式,上述解題過程也稱為分母有理化,
(1)的有理化因式是________;的有理化因式是________.
(2)將下列式子進(jìn)行分母有理化:①________;②________.
(3)計算.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com