【題目】如圖,在□ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結論:(1) ∠DCF=∠BCD;(2)EF=CF;(3)S△CDF=S△CEF;(4)∠DFE=3∠AEF.其中正確結論的個數是( )
A. 1個B. 2個C. 3個D. 4個
【答案】C
【解析】
利用平行四邊形的性質:平行四邊形的對邊相等且平行,再由全等三角形的判定得出△AEF≌△DMF(ASA),利用全等三角形的性質得出對應線段之間關系進而得出答案.
(1)∵F是AD的中點,
∴AF=FD,
∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=12∠BCD,故正確;
(2)延長EF,交CD延長線于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠MDF,
∵F為AD中點,
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故正確;
(3)∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF錯誤;
(4)設∠FEC=x,則∠FCE=x,
∴∠DCF=∠DFC=90°x,
∴∠EFC=180°2x,
∴∠EFD=90°x+180°2x=270°3x,
∵∠AEF=90°x,
∴∠DFE=3∠AEF,故正確,
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣4,3),B(﹣3,1),C(﹣1,3).
(1)請按下列要求畫圖:
①平移△ABC,使點A的對應點A1的坐標為(﹣4,﹣3),請畫出平移后的△A1B1C1;
②△A2B2C2與△ABC關于原點O中心對稱,畫出△A2B2C2.
(2)若將△A1B1C1繞點M旋轉可得到△A2B2C2,請直接寫出旋轉中心M點的坐標 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的點P處,折痕與BC交于點O.
(1)求證:△OCP∽△PDA;
(2)若PO:PA=1:2,則邊AB的長是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)模型建立,如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經過點C,過A作AD⊥ED于D,過B作BE⊥ED于E.求證:△BEC≌△CDA;
(2)模型應用:
①已知直線y=x+3與y軸交于A點,與x軸交于B點,將線段AB繞點B逆時針旋轉90度,得到線段BC,過點A,C作直線.求直線AC的解析式;
②如圖3,矩形ABCO,O為坐標原點,B的坐標為(8,6),A,C分別在坐標軸上,P是線段BC上動點,已知點D在第一象限,且是直線y=2x-6上的一點,若△APD是不以A為直角頂點的等腰直角三角形,請直接寫出所有符合條件的點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,請完成下列表格;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若a、b互為相反數,b、c互為倒數,并且m的立方等于它本身。
(1)求+ac值.
(2)若a>1,且m<0,S=|2a-3b|-2|b-m|-|b+|,求2a-S的值.
(3)若m≠0,試討論:x為有理數時|x+m|-|x-m|是否存在最大值?若存在求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某自行車廠計劃一周生產1400輛自行車,平均每天生產200輛,由于各種原因,實際每天的生產量與計劃量相比有出入。
下表是某周的生產情況(超產為正,減產為負):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據記錄可知前三天共生產了_________輛;
(2)產量最多的一天比產量最少的一天多生產__________輛;
(3)該廠實行計件工資制,每輛車60元,超額完成任務每輛獎15元,少生產一輛扣15元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com