【題目】根據(jù)不等式的基本性質(zhì),把下列不等式化成“xa”“xa”的形式:

14x3x+5 2)-2x<17

30.3x<-0.9 4xx4

【答案】(1)x>5;(2)x>;(3)x<-3.(4)x<-8

【解析】分析:(1)直接利用不等式的基本性質(zhì)1對不等式進(jìn)行變形即可;(2)利用不等式的基本性質(zhì)3對不等式變形即可,注意不等號的方向;

(3)利用不等式的基本性質(zhì)2對不等式變形即可;

(4)先利用不等式的基本性質(zhì)1對不等式進(jìn)行變形,再利用不等式的基本性質(zhì)2對不等式變形即可.

本題解析:

(1)4x>3x+5

4x-3x>5,

解得:x>5;

(2)-2x<17

解得:x-

(3)0.3x<-0.9

解得:x<-3;

4xx-4

x-x-4,

x-4

解得:x<-8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中, 、三邊的長分別為、,求這個三角形的面積.

小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)(即三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖所示.這樣不需求的高,而借用網(wǎng)格就能計算出它的面積.

(1)請你將的面積直接填寫在橫線上.__________________

思維拓展:

(2)我們把上述求面積的方法叫做構(gòu)圖法.若三邊的長分別為、),請利用圖的正方形網(wǎng)格(每個小正方形的邊長為)畫出相應(yīng)的,并求出它的面積.

探索創(chuàng)新:

(3)若三邊的長分別為、、,且),試運(yùn)用構(gòu)圖法求出這三角形的面積.(請用2B鉛筆將所作圖形加黑加粗)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明.

如圖,已知∠1=2,B=C,可推得ABCD.理由如下:

∵∠1=2(已知)

且∠1=CGD_______

∴∠2=CGD(等量代換)

CEBF_______

∴∠_____=BFD_______

又∵∠B=C(已知)

∴∠BFD=B_______

ABCD_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為打造書香校園,計劃購進(jìn)甲、乙兩種規(guī)格的書柜放置新購進(jìn)的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

(1)甲、乙兩種書柜每個的價格分別是多少元?

(2)若該校計劃購進(jìn)這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請設(shè)計出所有購買方案供這個學(xué)校選擇.

(3)試說明在(2)中哪種方案費(fèi)用最低?最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】穿越青海境內(nèi)的蘭新高速鐵路正在加緊施工.某工程隊承包了一段全長1957米的隧道工程,甲、乙兩個班組分別從南北兩端同時掘進(jìn),已知甲組比乙組每天多掘進(jìn)0.5米,經(jīng)過6天施工,甲、乙兩組共掘進(jìn)57米.

(1)求甲乙兩班組平均每天各掘進(jìn)多少米?

(2)為加快工程進(jìn)度,通過改進(jìn)施工技術(shù),在剩余的工程中,甲組平均每天比原來多掘進(jìn)0.3米,乙組平均每天比原來多掘進(jìn)0.2米.按此施工進(jìn)度,能夠比原來少用多少天完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在下面平面直角坐標(biāo)系中,已知A ,B ,C 三點(diǎn).其中滿足.

(1)的值;

(2)如果在第二象限內(nèi)有一點(diǎn) ,請用含的式子表示四邊形的面積;

(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積為△的面積的兩倍?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,H是△ABC的高AD,BE的交點(diǎn),且DH=DC,則下列結(jié)論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保護(hù)環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預(yù)計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?

(3)在(2)的條件下,哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,E是BD上的一點(diǎn),∠BAE=∠BCE,∠AED=∠CED,點(diǎn)G是BC、AE延長線的交點(diǎn),AG與CD相交于點(diǎn)F.
(1)求證:四邊形ABCD是正方形;
(2)當(dāng)AE=2EF時,判斷FG與EF有何數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案