【題目】如圖,已知DABC內(nèi)一點(diǎn),CD平分∠ACB,BDCD,∠A=ABD,若AC=9BC=5,則CD的長(zhǎng)為(

A.B.C.D.

【答案】C

【解析】

延長(zhǎng)BDAC交于點(diǎn)E,由題意可推出,依據(jù)CD平分∠ACB,BDCD,即可得等腰三角形BCE,可推出根據(jù),即可推出的長(zhǎng)度,繼而求得答案.

延長(zhǎng)BDAC交于點(diǎn)E,
∵∠A=ABD,
BE=AE,
BDCD,即BECD
又∵CD平分∠ACB,
∴∠BCD=ECD
∴∠EBC=BEC,
∴△BEC為等腰三角形,
BC=CE,
BECD
2BD=BE,
AC=9BC=5,
CE=5
AE=AC-EC=9-5=4,
BE=4,
BD=2
RtCBD中,BC=5,BD=2,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格中小正方形的邊長(zhǎng)為10,4).

(1) 在圖中標(biāo)出點(diǎn),使點(diǎn)到點(diǎn),,的距離都相等;

(2) 連接,,此時(shí)___________三角形;

(3) 四邊形的面積是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線x=﹣1是拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸,則①abc、a﹣b+c、a+b+c、2a﹣b、3a﹣b,其中是負(fù)數(shù)的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對(duì)應(yīng)值如下表:

那么關(guān)于它的圖象,下列判斷正確的是(  )

A. 開(kāi)口向上 B. x軸的另一個(gè)交點(diǎn)是(30

C. y軸交于負(fù)半軸 D. 在直線x=1的左側(cè)部分是下降的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于四邊形,給出下列組條件,①,,;;;,.其中能得到四邊形是矩形的條件有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC=8,BD=6,點(diǎn)E,F分別是邊AB,BC的中點(diǎn),點(diǎn)PAC上運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,存在PEPF的最小值,則這個(gè)最小值是( 。

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)、分別是的邊、上的點(diǎn),平分、平分

求證:

,,求證:四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,點(diǎn)E,點(diǎn)F分別是邊AC,AB上的點(diǎn),且,連結(jié)BE,CF交于點(diǎn)D,.

1)求證:是等腰三角形.

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《張丘建算經(jīng)》是一部數(shù)學(xué)問(wèn)題集,其內(nèi)容、范圍與《九章算術(shù)》相仿.其中提出并解決了一個(gè)在數(shù)學(xué)史上非常著名的不定方程問(wèn)題,通常稱為百雞問(wèn)題今有雞翁一值錢五,雞母一值錢三,雞雛三值錢一,凡百錢買雞百只,問(wèn)雞翁、母、雛各幾何.(譯文:公雞每只值五文錢,母雞每只值三文錢,小雞每三只值一文錢,現(xiàn)在用一百文錢買一百只雞,問(wèn)這一百只雞中,公雞、母雞、小雞各有多少只?)若買得公雞和母雞之和不超過(guò)20只,且買得公雞數(shù)不低于母雞數(shù),則此時(shí)買得小雞_____只.

查看答案和解析>>

同步練習(xí)冊(cè)答案