【題目】如圖,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個交點為A(3,0),另一個交點為B,且與y軸交于點C.若該二次函數(shù)圖象上有一點D(x,y),使S△ABD=S△ABC,則D點的坐標為____________________.
【答案】(2,3)或(1-,-3)或(1+,-3)
【解析】
利用待定系數(shù)法求出函數(shù)的解析式,然后令y=0求出B點和C點的坐標,再根據(jù)三角形的面積和函數(shù)的對稱性求出D點的坐標.
∵二次函數(shù)y=-x2+2x+m的圖象與x軸的一個交點為A(3,0)
∴-9+2×3+m=0
解得m=3
∴函數(shù)的解析式為y=-x2+2x+3,
令y=-x2+2x+3=0,求得x=3或x=-1,
則B點為(-1,0),C點為(0,3),函數(shù)的對稱軸為x=1
①由S△ABD=S△ABC可知D點可以是C點的對稱點,可得D點坐標為(2,3);
②設(shè)D點的坐標為(x,y),則由S△ABD=S△ABC==,解得y=3或y=-3,由此可得-x2+2x+3=-3,解得x=1±,可得D為(1-,-3)或(1+,-3).
故答案為:(2,3)或(1-,-3)或(1+,-3).
科目:初中數(shù)學 來源: 題型:
【題目】深圳市某校藝術(shù)節(jié)期間,開展了“好聲音”歌唱比賽,在初賽中,學生處對初賽成績做了統(tǒng)計分析,繪制成如下頻數(shù)、頻率分布表和頻數(shù)分布直方圖(如圖),請你根據(jù)圖中提供的信息,解答下列問題:
分組 | 頻數(shù) | 頻率 |
74.5≤x<79.5 | 2 | 0.04 |
79.5≤x<84.5 | a | 0.16 |
84.5≤x<89.5 | 20 | 0.40 |
89.5≤x<94.5 | 16 | 0.32 |
94.5≤x<100.5 | 4 | b |
合計 | 50 | 1 |
(1)頻數(shù)、頻率分布表中a= ,b= ;
(2)補全頻數(shù)分布直方圖;
(3)初賽成績在94.5≤x<100.5分的四位同學恰好是七年級、八年級各一位,九年級兩位,學生處打算從中隨機挑選兩位同學談一下決賽前的訓練,則所選兩位同學恰好都是九年級學生的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+3與坐標軸分別交于A,B兩點,拋物線y=ax2+bx-3a經(jīng)過點A,B,頂點為C,連接CB并延長交x軸于點E,點D與點B關(guān)于拋物線的對稱軸MN對稱.
(1)求拋物線的解析式及頂點C的坐標;
(2)求證:四邊形ABCD是直角梯形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,四邊形ABCD為正方形,點E,F分別在AB與BC上,且∠EDF=45°,易證:AE+CF=EF(不用證明).
(1)如圖②,在四邊形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,點E,F分別在AB與BC上,且∠EDF=60°.猜想AE,CF與EF之間的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖③,在四邊形ABCD中,∠ADC=2α,DA=DC,∠DAB與∠BCD互補,點E,F分別在AB與BC上,且∠EDF=α,請直接寫出AE,CF與EF之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),△ABC中,AB=AC,∠B、∠C的平分線相交于點O,過點O作EF∥BC交AB、AC于E、F。
①EF與BE、CF間有怎樣的數(shù)量關(guān)系?∠A與∠BOC怎樣的數(shù)量關(guān)系?說明理由。
②若AB≠AC,其他條件不變,如圖(2),圖中還有幾個等腰三角形嗎?如果有,第①問中EF與BE、CF間的關(guān)系還存在嗎?∠A與∠BOC的數(shù)量關(guān)系還存在嗎?
③若△ABC中,AB≠AC,∠B的平分線與三角形外角∠ACG的平分線CO交于O,過O點作OE∥BC交AB于E,交AC于F。如圖(3),EF與BE、CF間的關(guān)系如何?∠A與∠BOC的數(shù)量關(guān)系?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】長方形ABCD中,AB=6,AD=8,點E為邊AD上一點,將△ABE沿BE折疊后得到△BEF.
(1)如圖1,若點E為AD的中點,延長BF交邊CD于點G.
①求證:DG=FG.
②求FG的長度.
(2)如圖2,若點E為邊AD的一動點,連接FD,△DEF能否為直角三角形?若能,求出AE的值.若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,E為BC邊上一點,G為BC延長線上一點,過點E作∠AEM=60°,交∠ACG的平分線于點M.
(1)如圖1,當點E在BC邊的中點位置時,求證:AE=EM;
(2)如圖2,當點E在BC邊的任意位置時,(1)中的結(jié)論是否成立?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com