(2010•防城港)下列圖形中既是軸對稱圖形,又是中心對稱圖形的是( )
A.等邊三角形
B.平行四邊形
C.菱形
D.等腰梯形
【答案】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解.
解答:解:A、是軸對稱圖形.不是中心對稱圖形,因?yàn)檎也坏饺魏芜@樣的一點(diǎn),旋轉(zhuǎn)180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義.故錯誤;
B、不是軸對稱圖形,因?yàn)檎也坏饺魏芜@樣的一條直線,沿這條直線對折后它的兩部分能夠重合;即不滿足軸對稱圖形的定義.是中心對稱圖形.故錯誤;
C、是軸對稱圖形,也是中心對稱圖形.故正確;
D、是軸對稱圖形.不是中心對稱圖形,因?yàn)檎也坏饺魏芜@樣的一點(diǎn),旋轉(zhuǎn)180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義.故錯誤.
故選C.
點(diǎn)評:掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•防城港)已知:拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且A(-1,0),點(diǎn)B在x軸的正半軸上,OC=3OA(O為坐標(biāo)原點(diǎn)).
(1)求拋物線的解析式;
(2)若點(diǎn)E是拋物線上的一個動點(diǎn)且在x軸下方和拋物線對稱軸的左側(cè),過E作EF∥x軸交拋物線于另一點(diǎn)F,作ED⊥x軸于點(diǎn)D,F(xiàn)G⊥x軸于點(diǎn)G,求四邊形DEFG周長m的最大值;
(3)設(shè)拋物線頂點(diǎn)為P,當(dāng)四邊形DEFG周長m取得最大值時,以EF為邊的平行四邊形面積是△AEP面積的2倍,另兩頂點(diǎn)鐘有一頂點(diǎn)Q在拋物線上,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西玉林市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•防城港)已知:拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且A(-1,0),點(diǎn)B在x軸的正半軸上,OC=3OA(O為坐標(biāo)原點(diǎn)).
(1)求拋物線的解析式;
(2)若點(diǎn)E是拋物線上的一個動點(diǎn)且在x軸下方和拋物線對稱軸的左側(cè),過E作EF∥x軸交拋物線于另一點(diǎn)F,作ED⊥x軸于點(diǎn)D,F(xiàn)G⊥x軸于點(diǎn)G,求四邊形DEFG周長m的最大值;
(3)設(shè)拋物線頂點(diǎn)為P,當(dāng)四邊形DEFG周長m取得最大值時,以EF為邊的平行四邊形面積是△AEP面積的2倍,另兩頂點(diǎn)鐘有一頂點(diǎn)Q在拋物線上,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西防城港市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•防城港)已知:拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且A(-1,0),點(diǎn)B在x軸的正半軸上,OC=3OA(O為坐標(biāo)原點(diǎn)).
(1)求拋物線的解析式;
(2)若點(diǎn)E是拋物線上的一個動點(diǎn)且在x軸下方和拋物線對稱軸的左側(cè),過E作EF∥x軸交拋物線于另一點(diǎn)F,作ED⊥x軸于點(diǎn)D,F(xiàn)G⊥x軸于點(diǎn)G,求四邊形DEFG周長m的最大值;
(3)設(shè)拋物線頂點(diǎn)為P,當(dāng)四邊形DEFG周長m取得最大值時,以EF為邊的平行四邊形面積是△AEP面積的2倍,另兩頂點(diǎn)鐘有一頂點(diǎn)Q在拋物線上,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《概率》(02)(解析版) 題型:選擇題

(2010•防城港)擲一個骰子,向上一面的點(diǎn)數(shù)大于2且小于5的概率為p1,拋兩枚硬幣,正面均朝上的概率為p2,則( )
A.p1<p2
B.p1>p2
C.p1=p2
D.不能確定

查看答案和解析>>

同步練習(xí)冊答案