(2013•湖州二模)如圖,矩形ABCD中,AB=8,AD=3.點E從D向C以每秒1個單位的速度運動,以AE為一邊在AE的右下方作正方形AEFG.同時垂直于CD的直線MN也從C向D以每秒2個單位的速度運動,當經(jīng)過多少秒時.直線MN和正方形AEFG開始有公共點?( 。
分析:首先過點F作FQ⊥CD于點Q,證明△ADE≌△EQF,進而得出AD=EQ,得出當直線MN和正方形AEFG開始有公共點時:DQ+CM≥8進而求出即可.
解答:解:過點F作FQ⊥CD于點Q,
∵在正方形AEFG中,∠AEF=90°,AE=EF,
∴∠1+∠2=90°,
∵∠DAE+∠1=90°,
∴∠DAE=∠2,
在△ADE和△EQF中,
∠D=∠FQE
∠DAE=∠QEF
AE=EF

∴△ADE≌△EQF(AAS),
∴AD=EQ=3,
當直線MN和正方形AEFG開始有公共點時:DQ+CM≥8,
∴t+3+2t≥8,
解得:t≥
5
3
,
故當經(jīng)過
5
3
秒時.直線MN和正方形AEFG開始有公共點.
故選:A.
點評:此題主要考查了四邊形綜合應用以及全等三角形的判定與性質等知識,根據(jù)已知得出DQ+CM≥8是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•湖州二模)如圖,在直角坐標系中,矩形OABC的頂點A、B在雙曲線y=
k
x
( x>0)上,BC與x軸交于點D.若點A的坐標為(1,2),則點B的坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•湖州二模)如圖,一個含有30°角的直角三角板的兩個頂點放在一個矩形的對邊上,如果∠1=25°,那么∠2的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•湖州二模)如圖,點E是正方形ABCD的邊CD上一點,以A為圓心,AB為半徑的弧與BE交于點F,則∠EFD=
45
45
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•湖州二模)如圖,⊙P與y軸相切,圓心為P(-2,1),直線MN過點M(2,3),N(4,1).
(1)求⊙P在x軸上截得的線段長度;
(2)直接寫出圓心P到直線MN的距離.

查看答案和解析>>

同步練習冊答案