如圖,△ABC是等腰三角形,點D是底邊BC上異于BC中點的一個點,∠ADE=∠DAC,DE=AC.運用這個圖(不添加輔助線)可以說明下列哪一個命題是假命題?【   】

A.一組對邊平行,另一組對邊相等的四邊形是平行四邊形
B.有一組對邊平行的四邊形是梯形
C.一組對邊相等,一組對角相等的四邊形是平行四邊形
D.對角線相等的四邊形是矩形
C。
∵△ABC是等腰三角形,∴AB=AC,∠B=∠C,
∵DE=AC,AD=AD,∠ADE=∠DAC,即 DE=AC,∠ADE=∠DAC,AD=AD,
∴△ADE≌△DAC(SAS)!唷螮=∠C,
∴∠B=∠E,AB=DE,但是四邊形ABDE不是平行四邊形。
故一組對邊相等,一組對角相等的四邊形不是平行四邊形,因此C符合題意,故此選項正確。
故選C。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.
(1)三角形有   條面積等分線,平行四邊形有    條面積等分線;
(2)如圖①所示,在矩形中剪去一個小正方形,請畫出這個圖形的一條面積等分線;
(3)如圖②,四邊形ABCD中,AB與CD不平行,AB≠CD,且SABC<SACD,過點A畫出四邊形ABCD的面積等分線,并寫出理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖□ABCD中,AE平分交BC于E,EF∥AB交AD于F,試問:

(1)四邊形ABEF是什么圖形?請說明理由;
(2)當∠B為多少度數(shù)時,四邊形AECD是等腰梯形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),在矩形ABCD中,把∠B、∠D分別翻折,使點B、D分別落在對角線BC上的點E、F處,折痕分別為CM、AN.
(1)求證:△AND≌△CBM.
(2)請連接MF、NE,證明四邊形MFNE是平行四邊形,四邊形MFNE是菱形嗎?請說明理由?
(3)P、Q是矩形的邊CD、AB上的兩點,連結PQ、CQ、MN,如圖(2)所示,若PQ=CQ,PQ∥MN。且AB=4,BC=3,求PC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

菱形的對角線長分別是6cm和8cm,則菱形的周長是      。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,E是邊長為4cm的正方形ABCD的邊AB上一點,且AE=1cm,P為對角線BD上的任意一點,則AP+EP的最小值是         cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀理解:給定一個矩形,如果存在另一個矩形,它的周長和面積分別是已知矩形的周長和面積的一半,則這個矩形是給定矩形的“減半”矩形.如圖矩形是矩形ABCD的“減半”矩形.

請你解決下列問題:
(1)當矩形的長和寬分別為1,2時,它是否存在“減半”矩形?請作出判斷,并請說明理由;
(2)邊長為的正方形存在“減半”正方形嗎?如果存在,求出“減半”正方形的邊長;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,□ABCD中, ∠B=110°,延長ADF,延長CDE,連接EF,則∠E+∠F           _________°。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,將由5個邊長為1的小正方形組成的十字形紙板沿虛線剪拼成一個大正方形,需剪4
刀。

(1) 思考發(fā)現(xiàn):大正方形的面積等于5個小正方形的面積和,大正方形的邊長等于_______。
(2) 實踐操作:如圖2,將網格中5個邊長為1的小正方形組成的圖形紙板剪拼成一個大正方形,要求剪
兩刀,畫出剪拼的痕跡。
(3) 智力開發(fā):將網格中的5個邊長為1的正方形組成的十字形紙板,要求只剪2刀也拼成一個大正方形。
在圖中用虛線畫出剪拼的痕跡。

查看答案和解析>>

同步練習冊答案