【題目】如圖所示,在ABC中,∠BAC=90°,ADBCD,ACB的平分線(xiàn)交ADE,交ABF,FGBCG,請(qǐng)猜測(cè)AEFG之間有怎樣的關(guān)系,并說(shuō)明理由.

【答案】AEFG,理由見(jiàn)解析

【解析】

此題是探索性的問(wèn)題,考查線(xiàn)段之間的關(guān)系問(wèn)題,考查角平分線(xiàn)的性質(zhì)和同角或等角的余角相等的性質(zhì),考查等腰三角形的性質(zhì)。在初中階段對(duì)于線(xiàn)段之間關(guān)系有相等和不等兩方面,相等通過(guò)三角形的全等和等腰三角形來(lái)判斷,不等通過(guò)三角形邊的關(guān)系或直角三角形中斜邊和直角邊的關(guān)系體現(xiàn);此題中已知條件∠ACB的平分線(xiàn)交是AD,且,,所以有線(xiàn)段的相等關(guān)系,即,然后在考查的關(guān)系;根據(jù)余角的定義及性質(zhì)可以判斷,即可證明,即證;

證明:因?yàn)?/span>∠ACB的平分線(xiàn)交是AD,且,,所以;

中,,且是對(duì)頂角,所以,所以,所以;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為大力弘揚(yáng)“奉獻(xiàn)、友愛(ài)、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,東營(yíng)市某中學(xué)利用周末時(shí)間開(kāi)展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個(gè)志愿服務(wù)活動(dòng)(每人只參加一個(gè)活動(dòng)),九年級(jí)某班全班同學(xué)都參加了志愿服務(wù),班長(zhǎng)為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

(1)求該班的人數(shù);

(2)請(qǐng)把折線(xiàn)統(tǒng)計(jì)圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中,網(wǎng)絡(luò)文明部分對(duì)應(yīng)的圓心角的度數(shù);

(4)小明和小麗參加了志愿服務(wù)活動(dòng),請(qǐng)用樹(shù)狀圖或列表法求出他們參加同一服務(wù)活動(dòng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線(xiàn)yax2bxcx軸交于點(diǎn)A(20),B(40),且過(guò)點(diǎn)C(0,4)

(1)求出拋物線(xiàn)的表達(dá)式和頂點(diǎn)坐標(biāo);

(2)請(qǐng)你求出拋物線(xiàn)向左平移3個(gè)單位長(zhǎng)度,再向上平移1.5個(gè)單位長(zhǎng)度后拋物線(xiàn)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖①,,射線(xiàn)在這個(gè)角的內(nèi)部,點(diǎn)、分別在的邊、上,且于點(diǎn),于點(diǎn).求證:;

2)如圖②,點(diǎn)、分別在的邊上,點(diǎn)都在內(nèi)部的射線(xiàn)上,、分別是、的外角.已知,且.求證:;

3)如圖③,在中,.點(diǎn)在邊上,,點(diǎn)、在線(xiàn)段上,.若的面積為15,求的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線(xiàn)m經(jīng)過(guò)點(diǎn)A,BD直線(xiàn)m, CE直線(xiàn)m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=ACD、A、E三點(diǎn)都在直線(xiàn)m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

3拓展與應(yīng)用:如圖3,D、ED、A、E三點(diǎn)所在直線(xiàn)m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)FBAC平分線(xiàn)上的一點(diǎn),ABFACF均為等邊三角形,連接BDCE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ABADAC5,DABDCB90°,則四邊形ABCD的面積為( )

A.25B.12.5C.5D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線(xiàn)段AB8,射線(xiàn)BGAB,P為射線(xiàn)BG上一點(diǎn),連接AP,APCPAP=CP,連接AC,PD平分∠APC,CD與點(diǎn)BAP兩側(cè),在線(xiàn)段DP取一點(diǎn)E,使∠EAP=∠BAP,連接CE與線(xiàn)段AB相交于點(diǎn)F(點(diǎn)F與點(diǎn)A、B不重合).

(1)求證:AEP≌△CEP;

(2)判斷CFAB的位置關(guān)系,并說(shuō)明理由;

(3)求△AEF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°EAC上一點(diǎn),且AE=BC,過(guò)點(diǎn)AADCA,垂足為A,且AD=ACAB、DE交于點(diǎn)F試判斷線(xiàn)段ABDE的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)經(jīng)過(guò)點(diǎn)A,0),B,0),且與y軸相交于點(diǎn)C

1求這條拋物線(xiàn)的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線(xiàn)第一象限上一點(diǎn),且在對(duì)稱(chēng)軸的右側(cè),點(diǎn)E在線(xiàn)段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案