【題目】一個不透明的盒子中放入四張卡片,每張卡片上都寫有一個數(shù)字,分別是2,10,1.卡片除數(shù)字不同外其它均相同,從中隨機抽取兩張卡片,抽取的兩張卡片上數(shù)字之積為 0的概率是(

A.B.C.D.

【答案】A

【解析】

先利用列舉法確定總的結果數(shù),再找出抽取的兩張卡片上數(shù)字之積為0的結果數(shù),最后根據(jù)概率公式求解即可.

解:從21,01中隨機抽取2張卡片,結果共有(-2,-1),(-2,0),(-2,1),(-1,-2),(-1,0),(-1,1),(0,-2),(0-1),(0,1),(1-2),(1,-1),(1,0)這12種結果,

其中(-2,0),(-1,0),(0-2),(0-1),(0,1),(1,06種結果的卡片之積為0,

所以抽取的兩張卡片上數(shù)字之積為0的概率是;

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2-4mx+4m2-9=0

(1)求證:此方程有兩個不等的實數(shù)根;

(2)若方程的兩個根分別為x1,x2,其中x1>x2,若x1=3x2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線ABy軸交于點,與反比例函數(shù)在第二象限內(nèi)的圖象相交于點

1)求直線AB的解析式;

2)將直線AB向下平移9個單位后與反比例函數(shù)的圖象交于點C和點E,與y軸交于點D,求的面積;

3)設直線CD的解析式為,根據(jù)圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1k1x+bk1b為常數(shù),k1≠0)的圖象與反比例函數(shù)y2k2≠0)的圖象交于點Am,1)與點B(﹣1,﹣4).

1)求反比例函數(shù)與一次函數(shù)的解析式;

2)根據(jù)圖象說明,當x為何值時,k1x+b0;

3)若動點P是第一象限內(nèi)雙曲線上的點(不與點A重合),連接OP,過點Py軸的平行線交直線AB于點C,連接OC,若POC的面積為3,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,斜坡AF的坡度為5:12,斜坡AF上一棵與水平面垂直的大樹BD在陽光照射下,在斜坡上的影長BC=6.5米,此時光線與水平線恰好成30°角,求大樹BD的高.(結果精確的0.1米,參考數(shù)據(jù)≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有 50 個房間供游客居住,當每個房間的定價為每天 160 元時,房間會全部住滿,當每個房間每天的定價每增加 10 元時,就會有一個房間空閑,如果游客居住房間, 賓館需對每個房間每天支出 20 元的各種費用.設每個房間的定價為 x 元時,相應的住房數(shù)為 y 間.

1)求 y x 的函數(shù)關系式;

2)定價為多少時賓館當天利潤 w 最大?并求出一天的最大利潤;

3)若老板決定每住進去一間房就捐出 a 元(a≤30)給當?shù)馗@,同時要保證房間定價 x 160 元至 350 元之間波動時(包括兩端點),利潤 w x 的增大而增大,求 a 的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC,AD、CE是高,連接DE

1)求證:BC2DE

2)若∠BAC50°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】北京第一條地鐵線路于1971115日正式開通運營.截至20171月,北京地鐵共“金山銀山,不如綠水青山”.某市不斷推進“森林城市”建設,今春種植四類樹苗,園林部門從種植的這批樹苗中隨機抽取了4000棵,將各類樹苗的種植棵數(shù)繪制成扇形統(tǒng)計圖,將各類樹苗的成活棵數(shù)繪制成條形統(tǒng)計圖,經(jīng)統(tǒng)計松樹和楊樹的成活率較高,且楊樹的成活率為97%,根據(jù)圖表中的信息解答下列問題:

1)扇形統(tǒng)計圖中松樹所對的圓心角為   度,并補全條形統(tǒng)計圖.

2)該市今年共種樹16萬棵,成活了約多少棵?

3)園林部門決定明年從這四類樹苗中選兩類種植,請用列表法或樹狀圖求恰好選到成活率較高的兩類樹苗的概率.(松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,, ,點邊上的動點(點不與點,重合).以點為頂點作,射線邊于點,過點交射線,連接.

1)求證:;

2)當時(如圖),求的長;

3)點邊上運動的過程中,是否存在某個位置,使得?若存在,求出此時的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案