【題目】如圖,正方形ABCO的邊長(zhǎng)為,OAx軸正半軸的夾角為15°,點(diǎn)B在第一象限,點(diǎn)Dx軸的負(fù)半軸上,且滿(mǎn)足∠BDO15°,直線(xiàn)ykx+b經(jīng)過(guò)B、D兩點(diǎn),則bk_____

【答案】2

【解析】

連接OB,過(guò)點(diǎn)BBEx軸于點(diǎn)E,根據(jù)正方形的性質(zhì)可得出∠AOB的度數(shù)及OB的長(zhǎng),結(jié)合三角形外角的性質(zhì)可得出∠BDO=∠DBO,利用等角對(duì)等邊可得出ODOB,進(jìn)而可得出點(diǎn)D的坐標(biāo),在RtBOE中,通過(guò)解直角三角形可得出點(diǎn)B的坐標(biāo),由點(diǎn)B,D的坐標(biāo),利用待定系數(shù)法可求出kb的值,再將其代入(bk)中即可求出結(jié)論.

解:連接OB,過(guò)點(diǎn)BBEx軸于點(diǎn)E,如圖所示.

∵正方形ABCO的邊長(zhǎng)為,

∴∠AOB45°,OBOA2

OAx軸正半軸的夾角為15°,

∴∠BOE45°﹣15°=30°.

又∵∠BDO15°,

∴∠DBO=∠BOE﹣∠BDO15°,

∴∠BDO=∠DBO,

ODOB2,

∴點(diǎn)D的坐標(biāo)為(﹣20).

RtBOE中,OB2,∠BOE30°,

BEOB1,OE,

∴點(diǎn)B的坐標(biāo)為(1).

B,1),D(﹣2,0)代入ykx+b,

得:,

解得:,

bk42﹣(2)=2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,A,B兩個(gè)頂點(diǎn)在x軸上方,點(diǎn)C的坐標(biāo)是(10),以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長(zhǎng)放大到原來(lái)的2倍,得到△A'B'C',設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)B'的橫坐標(biāo)為2,則點(diǎn)B的橫坐標(biāo)為(  )

A.1B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(操作)BD是矩形ABCD的對(duì)角線(xiàn),AB=4,BC=3.將BAD繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)α度(α360°)得到BEF,點(diǎn)A、D的對(duì)應(yīng)點(diǎn)分別為EF.若點(diǎn)E落在BD上,如圖①,則DE=______

(探究)當(dāng)點(diǎn)E落在線(xiàn)段DF上時(shí),CDBE交于點(diǎn)G.其它條件不變,如圖②.

1)求證:ADB≌△EDB;

2CG的長(zhǎng)為______

(拓展)連結(jié)CF,在BAD的旋轉(zhuǎn)過(guò)程中,設(shè)CEF的面積為S,直接寫(xiě)出S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=EDF=90°,△EDF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線(xiàn)段DE與線(xiàn)段AB相交于點(diǎn)P,線(xiàn)段EF與射線(xiàn)CA相交于點(diǎn)Q

1)如圖,當(dāng)點(diǎn)Q在線(xiàn)段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;

2)如圖,當(dāng)點(diǎn)Q在線(xiàn)段CA的延長(zhǎng)線(xiàn)上時(shí),求證:△BPE∽△CEQ;

3)在(2)的條件下,BP=2CQ=9,則BC的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于點(diǎn),與軸的負(fù)半軸交于點(diǎn),且

1)求一次函數(shù)的表達(dá)式;

2)在軸上是否存在一點(diǎn),使得是以為腰的等腰三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)反比例函數(shù)的圖象記為曲線(xiàn),將向右平移3個(gè)單位長(zhǎng)度,得曲線(xiàn),則平移至處所掃過(guò)的面積是_________.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y=x+4與坐標(biāo)軸交于A,B兩點(diǎn),OCAB于點(diǎn)C,P是線(xiàn)段OC上的一個(gè)動(dòng)點(diǎn),連接AP,將線(xiàn)段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,得到線(xiàn)段AP',連接CP',則線(xiàn)段CP'的最小值為(  )

A.B.1C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖拋物線(xiàn)y=ax2+3ax+ca0)與y軸交于點(diǎn)C,與x軸交于AB兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(10),OC=3OB,


1)求拋物線(xiàn)的解析式;
2)若點(diǎn)D是線(xiàn)段AC下方拋物線(xiàn)上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線(xiàn)上.是否存在以A,CE,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,蘭蘭站在河岸上的G點(diǎn),看見(jiàn)河里有一只小船沿垂直于岸邊的方向劃過(guò)來(lái),此時(shí),測(cè)得小船C的俯角是∠FDC30°,若蘭蘭的眼睛與地面的距離是1.5米,BG1米,BG平行于AC所在的直線(xiàn),迎水坡的坡度i43,坡高BE8米,求小船C到岸邊的距離CA的長(zhǎng).(參考數(shù)據(jù):≈1.7,結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)y=ax-1)(x-a),其中a是常數(shù),且a0

1)當(dāng)a=2時(shí),試判斷點(diǎn)(-,-5)是否在該函數(shù)圖象上.

2)若函數(shù)的圖象經(jīng)過(guò)點(diǎn)(1,-4),求該函數(shù)的表達(dá)式.

3)當(dāng)-1≤x+1時(shí),yx的增大而減小,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案