作业宝如圖,已知拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)A(-1,0),C(3,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖,動(dòng)點(diǎn)D從點(diǎn)O開始沿OB向終點(diǎn)B以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)E從點(diǎn)O開始沿OC向終點(diǎn)C以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)E作GE⊥OC,交CB于點(diǎn)F,交拋物線y=ax2+bx+3于點(diǎn)G,連接BG,DF,點(diǎn)D,E從點(diǎn)O同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0),在運(yùn)動(dòng)過(guò)程中,若四邊形BDFG為正方形,求t的值;
(3)將(2)中的正方形BDFG沿y軸翻折180°,得到正方形BDF′G′,然后將正方形BDF′G′沿直線BC方向向下平移,設(shè)在平移過(guò)程中正方形BDF′G′與△BOC重合部分的面積為S,平移的距離為m(0≤m≤3數(shù)學(xué)公式),請(qǐng)直接寫出S與m之間的函數(shù)關(guān)系式.

解:(1)∵拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)A(-1,0),C(3,0)兩點(diǎn),
,
解得
所以,拋物線的解析式為y=-x2+2x+3;

(2)方法一:令x=0,則y=3,
∴點(diǎn)B的坐標(biāo)為(0,3),
由題意得,點(diǎn)D的坐標(biāo)為(0,t),
BD=3-t,
∵C(3,0),
∴直線BC的解析式為y=-x+3,
∵點(diǎn)E的坐標(biāo)為(2t,0),
∴GF=-(2t)2+4t+3-(-2t+3)=-4t2+6t,
當(dāng)BD=GF時(shí),由于BD∥GF,四邊形BDFG是平行四邊形,
∴-4t2+6t=3-t,
整理得,4t2-7t+3=0,
解得t1=1,t2=,
當(dāng)t=1時(shí),點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)F的坐標(biāo)為(2,1),
點(diǎn)B的坐標(biāo)為(0,3),
此時(shí)BD=BF,∠FDB=90°,
∴四邊形BDFG是正方形;
當(dāng)t=時(shí),點(diǎn)D的坐標(biāo)為(0,),點(diǎn)F的坐標(biāo)為(,),∠FDB≠90°,
∴四邊形BDFG不是正方形,
故,當(dāng)t=1時(shí),四邊形BDFG是正方形;

方法二:令x=0,則y=3,
∴點(diǎn)B的坐標(biāo)為(0,3),
由題意得,點(diǎn)D的坐標(biāo)為(0,t),
BD=3-t,
∵C(3,0),
∴直線BC的解析式為y=-x+3,
∵點(diǎn)E的坐標(biāo)為(2t,0),
∴點(diǎn)F的坐標(biāo)為(2t,-2t+3),
若四邊形BDFG是正方形,則DF⊥BD,DF=BF,
∴-2t+3=t,
解得t=1,
此時(shí),點(diǎn)F的坐標(biāo)為(2,1),點(diǎn)G的坐標(biāo)為(2,3),
∴BD=FG=DF=BG=2,
∴四邊形BDFG是正方形;

(3)∵B(0,3),C(3,0),
∴OB=OC,
∴△BOC是等腰直角三角形,
如圖所示,①DF′在x軸上方時(shí),0≤m<,重疊部分矩形的寬=m,
面積=2×m=m,
②DF在x軸下方,F(xiàn)′G′在y軸左邊時(shí),≤m<2,
重疊部分的面積=×3×3-××-××
=-m2+m,
③DF′在x軸下方,F(xiàn)′G′在y軸右邊時(shí),2≤m≤3,重疊部分矩形的寬=(3-m),
面積=(3-m)×2=-m+6,
綜上所述,S=
分析:(1)利用待定系數(shù)法求二次函數(shù)解析式解答即可;
(2)方法一:令x=0求出點(diǎn)B的坐標(biāo),然后表示出點(diǎn)D的坐標(biāo),從而得到BD的長(zhǎng)度,再求出直線BC的解析式,并求出點(diǎn)E的坐標(biāo),然后根據(jù)拋物線解析式與直線解析式求出GF,根據(jù)平行四邊形對(duì)邊平行且相等可得BD=GF,列出方程求出t的值,再進(jìn)行驗(yàn)證即可得解;
方法二:令x=0求出點(diǎn)B的坐標(biāo),然后表示出點(diǎn)D的坐標(biāo),從而得到BD的長(zhǎng)度,再求出直線BC的解析式,并求出點(diǎn)E的坐標(biāo),然后表示出點(diǎn)F的坐標(biāo),再根據(jù)正方形的鄰邊垂直且相等表示出DF,并根據(jù)BD=DF列出方程求出t值,再求出F、G的坐標(biāo),然后進(jìn)行判定即可;
(3)分①DF′在x軸上方時(shí),表示出重疊部分矩形的寬,然后根據(jù)矩形的面積公式列式計(jì)算即可得解;②DF在x軸下方,F(xiàn)′G′在y軸左邊時(shí),重疊部分等于△BOC的面積減去兩個(gè)等腰直角三角形的面積,列式整理即可得解;③DF′在x軸下方,F(xiàn)′G′在y軸右邊時(shí),表示出重疊部分矩形的寬,再根據(jù)矩形的面積公式列式計(jì)算即可得解.
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,主要利用了待定系數(shù)法求二次函數(shù)解析式,等腰直角三角形的性質(zhì),正方形的判定與性質(zhì),陰影部分面積的表示方法,難點(diǎn)在于(3)要根據(jù)移動(dòng)的距離的變化以及陰影部分的不同表示方法分情況討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過(guò)A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•衡陽(yáng))如圖,已知拋物線經(jīng)過(guò)A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線段OB上運(yùn)動(dòng),過(guò)點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且拋物線經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長(zhǎng)度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案