我們?cè)诮鉀Q數(shù)學(xué)問題時(shí),經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
譬如,在學(xué)習(xí)了一元一次方程的解法以后,進(jìn)一步研究二元一次方程組的解法時(shí),我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進(jìn)一步研究多邊形的內(nèi)角和問題時(shí),我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
問題提出:如何把一個(gè)正方形分割成n(n≥9)個(gè)小正方形?
為解決上面問題,我們先來研究?jī)煞N簡(jiǎn)單的“基本分割法”.
基本分割法1:如圖①,把一個(gè)正方形分割成4個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了3個(gè)正方形.
基本分割法2:如圖②,把一個(gè)正方形分割成6個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了5個(gè)正方形.

問題解決:有了上述兩種“基本分割法”后,我們就可以把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
(1)把一個(gè)正方形分割成9個(gè)小正方形.
一種方法:如圖③,把圖①中的任意1個(gè)小正方形按“基本分割法2”進(jìn)行分割,就可增加5個(gè)小正方形,從而分割成4+5=9(個(gè))小正方形.
另一種方法:如圖④,把圖②中的任意1個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3個(gè)小正方形,從而分割成6+3=9(個(gè))小正方形.
(2)把一個(gè)正方形分割成10個(gè)小正方形.
方法:如圖⑤,把圖①中的任意2個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3×2個(gè)小正方形,從而分割成4+3×2=10(個(gè))小正方形.
(3)請(qǐng)你參照上述分割方法,把圖⑥給出的正方形分割成11個(gè)小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
(4)把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
方法:通過“基本分割法1”、“基本分割法2”或其組合把一個(gè)正方形分割成9個(gè)、10個(gè)和11個(gè)小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個(gè)小正方形,從而把一個(gè)正方形分割成12個(gè)、13個(gè)、14個(gè)小正方形,依此類推,即可把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個(gè)小正方形.
類比應(yīng)用:仿照上面的方法,我們可以把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形.
(1)基本分割法1:把一個(gè)正三角形分割成4個(gè)小正三角形(請(qǐng)你在圖a中畫出草圖);
(2)基本分割法2:把一個(gè)正三角形分割成6個(gè)小正三角形(請(qǐng)你在圖b中畫出草圖);
(3)分別把圖c、圖d和圖e中的正三角形分割成9個(gè)、10個(gè)和11個(gè)小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

(4)請(qǐng)你寫出把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形的分割方法(只寫出分割方法,不用畫圖).

解:(1)把一個(gè)正方形分割成11個(gè)小正方形:

(2)把一個(gè)正三角形分割成4個(gè)小正三角形:

(3)一個(gè)正三角形分割成6個(gè)小正三角形:

(4)把一個(gè)正三角形分割成9個(gè)、10個(gè)和11個(gè)小正三角形:


把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形的分割方法:通過“基本分割法1”、“基本分割法2”或其組合,把一個(gè)正三角形分割成9個(gè)、10個(gè)和11個(gè)小正三角形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個(gè)小正三角形,從而把一個(gè)正三角形分割成12個(gè)、13個(gè)、14個(gè)小正三角形,依此類推,即可把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形.
分析:(3)按“基本分割2”進(jìn)行兩次即可;
(4)類比應(yīng)用:
①基本分割法1即利用正三角形的3條中位線把一個(gè)正三角形分割成4個(gè)小正三角形;
②將兩腰的三等分點(diǎn)靠底邊的兩個(gè)連接,將其分割成一個(gè)小正△和梯形,再用梯形上底的中點(diǎn)和下底的三等分點(diǎn).
驗(yàn)證:可假設(shè)正△邊長(zhǎng)為3,三等點(diǎn)連線后上面小△與原△相似,得梯形的上底=2,中點(diǎn)后得邊長(zhǎng)=1,下底三等分點(diǎn)各邊長(zhǎng)=1.
③圖c分別按基本分割1和基本分割2各進(jìn)行一次即可;
圖d分別按基本分割1進(jìn)行3次即可;
圖e分別按基本分割2進(jìn)行2次即可;
④類比正方形的分割中的第(4)小題,即可作出答案:
通過“基本分割法1”、“基本分割法2”或其組合把一個(gè)正三角形分割成9個(gè)、10個(gè)和11個(gè)小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個(gè)小正三角形,從而把一個(gè)正三角形分割成12個(gè)、13個(gè)、14個(gè)小正方形,依此類推,即可把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形.
點(diǎn)評(píng):本題一方面考查了學(xué)生的動(dòng)手操作能力,另一方面考查了學(xué)生的空間想象能力,重視知識(shí)的發(fā)生過程,讓學(xué)生體驗(yàn)學(xué)習(xí)的過程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

21、我們?cè)诮鉀Q數(shù)學(xué)問題時(shí),經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
譬如,在學(xué)習(xí)了一元一次方程的解法以后,進(jìn)一步研究二元一次方程組的解法時(shí),我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進(jìn)一步研究多邊形的內(nèi)角和問題時(shí),我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
問題提出:如何把一個(gè)正方形分割成n(n≥9)個(gè)小正方形?
為解決上面問題,我們先來研究?jī)煞N簡(jiǎn)單的“基本分割法”.
基本分割法1:如圖①,把一個(gè)正方形分割成4個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了3個(gè)正方形.
基本分割法2:如圖②,把一個(gè)正方形分割成6個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了5個(gè)正方形.

問題解決:有了上述兩種“基本分割法”后,我們就可以把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
(1)把一個(gè)正方形分割成9個(gè)小正方形.
一種方法:如圖③,把圖①中的任意1個(gè)小正方形按“基本分割法2”進(jìn)行分割,就可增加5個(gè)小正方形,從而分割成4+5=9(個(gè))小正方形.
另一種方法:如圖④,把圖②中的任意1個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3個(gè)小正方形,從而分割成6+3=9(個(gè))小正方形.
(2)把一個(gè)正方形分割成10個(gè)小正方形.
方法:如圖⑤,把圖①中的任意2個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3×2個(gè)小正方形,從而分割成4+3×2=10(個(gè))小正方形.
(3)請(qǐng)你參照上述分割方法,把圖⑥給出的正方形分割成11個(gè)小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
(4)把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
方法:通過“基本分割法1”、“基本分割法2”或其組合把一個(gè)正方形分割成9個(gè)、10個(gè)和11個(gè)小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個(gè)小正方形,從而把一個(gè)正方形分割成12個(gè)、13個(gè)、14個(gè)小正方形,依次類推,即可把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個(gè)小正方形.
類比應(yīng)用:仿照上面的方法,我們可以把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形.
(1)基本分割法1:把一個(gè)正三角形分割成4個(gè)小正三角形(請(qǐng)你在圖a中畫出草圖);
(2)基本分割法2:把一個(gè)正三角形分割成6個(gè)小正三角形(請(qǐng)你在圖b中畫出草圖);
(3)分別把圖c、圖d和圖e中的正三角形分割成9個(gè)、10個(gè)和11個(gè)小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

(4)請(qǐng)你寫出把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形的分割方法(只寫出分割方法,不用畫圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

我們?cè)诮鉀Q數(shù)學(xué)問題時(shí),經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.

譬如,在學(xué)習(xí)了一元一次方程的解法以后,進(jìn)一步研究二元一次方程組的解法時(shí),我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進(jìn)一步研究多邊形的內(nèi)角和問題時(shí),我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.

問題提出:如何把一個(gè)正方形分割成)個(gè)小正方形?

為解決上面問題,我們先來研究?jī)煞N簡(jiǎn)單的“基本分割法”.

基本分割法1:如圖①,把一個(gè)正方形分割成4個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了3個(gè)正方形.

基本分割法2:如圖②,把一個(gè)正方形分割成6個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了5個(gè)正方形.

 


問題解決:有了上述兩種“基本分割法”后,我們就可以把一個(gè)正方形分割成)個(gè)小正方形.

(1)把一個(gè)正方形分割成9個(gè)小正方形.

一種方法:如圖③,把圖①中的任意1個(gè)小正方形按“基本分割法2”進(jìn)行分割,就可增加5個(gè)小正方形,從而分割成(個(gè))小正方形.

另一種方法:如圖④,把圖②中的任意1個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3個(gè)小正方形,從而分割成(個(gè))小正方形.

(2)把一個(gè)正方形分割成10個(gè)小正方形.

方法:如圖⑤,把圖①中的任意2個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加個(gè)小正方形,從而分割成(個(gè))小正方形.

(3)請(qǐng)你參照上述分割方法,把圖⑥給出的正方形分割成11個(gè)小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)

(4)把一個(gè)正方形分割成)個(gè)小正方形.

方法:通過“基本分割法1”、“基本分割法2”或其組合把一個(gè)正方形分割成9個(gè)、10個(gè)和11個(gè)小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個(gè)小正方形,從而把一個(gè)正方形分割成12個(gè)、13個(gè)、14個(gè)小正方形,依次類推,即可把一個(gè)正方形分割成)個(gè)小正方形.

從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成)個(gè)小正方形.

類比應(yīng)用:仿照上面的方法,我們可以把一個(gè)正三角形分割成)個(gè)小正三角形.

(1)基本分割法1:把一個(gè)正三角形分割成4個(gè)小正三角形(請(qǐng)你在圖a 中畫出草圖).

(2)基本分割法2:把一個(gè)正三角形分割成6個(gè)小正三角形(請(qǐng)你在圖b 中畫出草圖).

(3)分別把圖c、圖d和圖e中的正三角形分割成9個(gè)、10個(gè)和11個(gè)小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)

 


(4)請(qǐng)你寫出把一個(gè)正三角形分割成)個(gè)小正三角形的分割方法(只寫出分割方法,不用畫圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:山東省中考真題 題型:解答題

我們?cè)诮鉀Q數(shù)學(xué)問題時(shí),經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題。
譬如,在學(xué)習(xí)了一元一次方程的解法以后,進(jìn)一步研究二元一次方程組的解法時(shí),我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進(jìn)一步研究多邊形的內(nèi)角和問題時(shí),我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題。
問題提出:如何把一個(gè)正方形分割成n(n≥9)個(gè)小正方形?
為解決上面問題,我們先來研究?jī)煞N簡(jiǎn)單的“基本分割法”,
基本分割法1:如圖①,把一個(gè)正方形分割成4個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了3個(gè)正方形。
基本分割法2:如圖②,把一個(gè)正方形分割成6個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了5個(gè)正方形。

問題解決:有了上述兩種“基本分割法”后,我們就可以把一個(gè)正方形分割成n(n≥9)個(gè)小正方形。
(1)把一個(gè)正方形分割成9個(gè)小正方形,
一種方法:如圖③,把圖①中的任意1個(gè)小正方形按“基本分割法2”進(jìn)行分割,就可增加5個(gè)小正方形,從而分割成4+5=9(個(gè))小正方形。
另一種方法:如圖④,把圖②中的任意1個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3個(gè)小正方形,從而分割成6+3=9(個(gè))小正方形。
(2)把一個(gè)正方形分割成10個(gè)小正方形,
方法:如圖⑤,把圖①中的任意2個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3×2個(gè)小正方形,從而分割成4+3×2=10(個(gè))小正方形。
(3)請(qǐng)你參照上述分割方法,把圖⑥給出的正方形分割成11個(gè)小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法).
(4)把一個(gè)正方形分割成n(n≥9)個(gè)小正方形,
方法:通過“基本分割法1”、“基本分割法2”或其組合把一個(gè)正方形分割成9個(gè)、10個(gè)和11個(gè)小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個(gè)小正方形,從而把一個(gè)正方形分割成12個(gè)、13個(gè)、14個(gè)小正方形,依次類推,即可把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個(gè)小正方形。
類比應(yīng)用:仿照上面的方法,我們可以把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形。
(1)基本分割法1:把一個(gè)正三角形分割成4個(gè)小正三角形(請(qǐng)你在圖a中畫出草圖);
(2)基本分割法2:把一個(gè)正三角形分割成6個(gè)小正三角形(請(qǐng)你在圖b中畫出草圖);
(3)分別把圖c、圖d和圖e中的正三角形分割成9個(gè)、10個(gè)和11個(gè)小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);
(4)請(qǐng)你寫出把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形的分割方法(只寫出分割方法,不用畫圖)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2009•青島)我們?cè)诮鉀Q數(shù)學(xué)問題時(shí),經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
譬如,在學(xué)習(xí)了一元一次方程的解法以后,進(jìn)一步研究二元一次方程組的解法時(shí),我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進(jìn)一步研究多邊形的內(nèi)角和問題時(shí),我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
問題提出:如何把一個(gè)正方形分割成n(n≥9)個(gè)小正方形?
為解決上面問題,我們先來研究?jī)煞N簡(jiǎn)單的“基本分割法”.
基本分割法1:如圖①,把一個(gè)正方形分割成4個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了3個(gè)正方形.
基本分割法2:如圖②,把一個(gè)正方形分割成6個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了5個(gè)正方形.

問題解決:有了上述兩種“基本分割法”后,我們就可以把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
(1)把一個(gè)正方形分割成9個(gè)小正方形.
一種方法:如圖③,把圖①中的任意1個(gè)小正方形按“基本分割法2”進(jìn)行分割,就可增加5個(gè)小正方形,從而分割成4+5=9(個(gè))小正方形.
另一種方法:如圖④,把圖②中的任意1個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3個(gè)小正方形,從而分割成6+3=9(個(gè))小正方形.
(2)把一個(gè)正方形分割成10個(gè)小正方形.
方法:如圖⑤,把圖①中的任意2個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3×2個(gè)小正方形,從而分割成4+3×2=10(個(gè))小正方形.
(3)請(qǐng)你參照上述分割方法,把圖⑥給出的正方形分割成11個(gè)小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
(4)把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
方法:通過“基本分割法1”、“基本分割法2”或其組合把一個(gè)正方形分割成9個(gè)、10個(gè)和11個(gè)小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個(gè)小正方形,從而把一個(gè)正方形分割成12個(gè)、13個(gè)、14個(gè)小正方形,依此類推,即可把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個(gè)小正方形.
類比應(yīng)用:仿照上面的方法,我們可以把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形.
(1)基本分割法1:把一個(gè)正三角形分割成4個(gè)小正三角形(請(qǐng)你在圖a中畫出草圖);
(2)基本分割法2:把一個(gè)正三角形分割成6個(gè)小正三角形(請(qǐng)你在圖b中畫出草圖);
(3)分別把圖c、圖d和圖e中的正三角形分割成9個(gè)、10個(gè)和11個(gè)小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

(4)請(qǐng)你寫出把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形的分割方法(只寫出分割方法,不用畫圖).

查看答案和解析>>

同步練習(xí)冊(cè)答案