【題目】 已知:如圖1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°.求證:Rt△ABC和Rt△A′B′C′全等.
(1)請(qǐng)你用“如果…,那么…”的形式敘述上述命題;
(2)如圖2,將△ABC和A′B′C′拼在一起(即:點(diǎn)A與點(diǎn)B′重合,點(diǎn)B與點(diǎn)A′重合),BC和B′C′相交于點(diǎn)O,請(qǐng)用此圖證明上述命題.
【答案】(1)如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊分別相等,那么這兩個(gè)直角三角形全等;(2)見解析
【解析】
(1)把已知的條件用語言敘述是一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三形的斜邊和一條直角邊分別相等,結(jié)論是兩個(gè)三角形全等,據(jù)此即可寫出;
(2)根據(jù)全等三角形的判定和性質(zhì)即可得到結(jié)論.
(1)如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊分別相等,那么這兩個(gè)直角三角形全等;
(2)在△ACO和直角△A'C'O′中,
,
∴△ACO≌△A′C′O,
∴OC=C′O,AO=A′O,
∴BC=B′C′,
在△ABC與△A′B′C′中,
∴△ABC≌△A'B'C'(SSS).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過矩形ABCD的對(duì)角線AC的中點(diǎn)O作EF⊥AC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC的斜邊AB=8,AC=4.以點(diǎn)C為圓心作圓,當(dāng)⊙C與邊AB只有一個(gè)交點(diǎn)時(shí),則⊙C的半徑的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,先將正方形紙片對(duì)折,折痕為MN,再把點(diǎn)B折疊在折痕MN上,折痕為AE,點(diǎn)E在CB上,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為H,連接DH,則下列選項(xiàng)錯(cuò)誤的是( 。
A.△ADH是等邊三角形B.NE=BC
C.∠BAE=15°D.∠MAH+∠NEH=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長(zhǎng)為4米.
(1)求新傳送帶AC的長(zhǎng)度;
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形OABC,以點(diǎn)O為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,其中A(2,0),C(0,3),點(diǎn)P以每秒1個(gè)單位的速度從點(diǎn)C出發(fā)在射線CO上運(yùn)動(dòng),連接BP,作BE⊥PB交x軸于點(diǎn)E,連接PE交AB于點(diǎn)F,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2時(shí),求點(diǎn)E的坐標(biāo);
(2)若AB平分∠EBP時(shí),求t的值.
(3)在運(yùn)動(dòng)的過程中,是否存在以P、O、E為頂點(diǎn)的三角形與△ABE相似.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在△ABC中,AB=AC,點(diǎn) D 是邊 BC 的中點(diǎn).以BD為直徑作⊙O,交邊 AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是⊙O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:CE=2PE;
(3)如圖2,當(dāng)PC是⊙O的切線,E為AD 中點(diǎn),BC=8,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)的最大值為4,且拋物線過點(diǎn)(,﹣),點(diǎn)P(t,0)是x軸上的動(dòng)點(diǎn),拋物線與y軸交點(diǎn)為C,頂點(diǎn)為D.
(1)求該二次函數(shù)的解析式,及頂點(diǎn)D的坐標(biāo);
(2)求|PC﹣PD|的最大值及對(duì)應(yīng)的點(diǎn)P的坐標(biāo);
(3)設(shè)Q(0,2t)是y軸上的動(dòng)點(diǎn),若線段PQ與函數(shù)y=a|x|2﹣2a|x|+c的圖象只有一個(gè)公共點(diǎn),求t的取值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com