【題目】在△ABC中,AD是它的角平分線.
(1)如圖1,求證:S△ABD:S△ACD=AB:AC=BD:CD;
(2)如圖2,E是AB上的點,連接ED,若BD=3,BE=CD=2,AE=2CD,求證:△BED是等腰三角形;
(3)在圖1中,若3∠BAC=2∠C,∠ADB>∠B>∠BAD,直接寫出∠BAC的取值范圍 .
【答案】(1)證明見解析;(2)證明見解析;(3)40°<∠BAC<60°.
【解析】
(1)作輔助線,構(gòu)建三角形的性質(zhì)得:DE=DF,利用三角形面積的不同計算方法可得結(jié)論;
(2)證明△AED≌△ACD,可得DE=CD=BE,可得結(jié)論;
(3)設(shè)∠BAD=x,根據(jù)∠ADB>∠B>∠BAD,列不等式可解答.
證明:(1)如圖1,過D作DE⊥AB于E,DF⊥AC于F,
∵AD平分∠BAC,
∴DE=DF,
∴====;
S△ABD:S△ACD=AB:AC=BD:CD;
(2)如圖2,由(1)知:AB:AC=BD:CD;
∵BE=CD=2,AE=2CD=4,
∴,AC=4=AE,
在△AED和△ACD中
∴△AED≌△ACD(SAS),
∴ED=CD=2,
∵BE=2,∴BE=DE=2,
∴△BED是等腰三角形;
(3)設(shè)∠BAD=x,則∠BAC=2x,
∵3∠BAC=2∠C,
∴∠C=3x,
∴∠ADB=∠DAC+∠C=4x,
∵∠ADB>∠B>∠BAD,
∴4x>1805x>x,
解得:20°<x<30°,
∴40°<∠BAC<60°.
故答案為:40°<∠BAC<60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點C,將一個三角板的直角頂點與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長線)相交于點D,E.
當(dāng)三角板繞點C旋轉(zhuǎn)到CD與OA垂直時(如圖①),易證:OD+OE=OC;
當(dāng)三角板繞點C旋轉(zhuǎn)到CD與OA不垂直時,即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.
(1)求二次函數(shù)y=ax2+bx的解析式;
(2)若當(dāng)-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)雞場有2500只雞準(zhǔn)備對外出售.從中隨機(jī)抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)圖①中的值為 ;
(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ) 根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的約有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,等腰Rt△ABC,等腰Rt△ADE,AB⊥AC,AD⊥AE,AB=AC,AD=AE,CD交AE、BE分別于點M、F
(1)求證:△DAC≌△EAB;
(2)若∠AEF=15°,EF=4,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,3)、B(3,0),以點B為圓心、2為半徑的⊙B上有一動點P.連接AP,若點C為AP的中點,連接OC,則OC的最小值為( 。
A. 1 B. 2﹣1 C. D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:
(1)如圖①,已知:.求作:射線,使平分.(要求:尺規(guī)作圖,不寫作法,但需保留作圖痕跡) .
(2)題(1)中作圖的依據(jù)是全等三角形判定方法中的__________.
(3)在圖②中作出,使它與關(guān)于軸對稱.
(4)在圖②中的軸上找到一點,使的周長最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C在同一直線上,△ABD,△BCE都是等邊三角形.
(1)求證:AE=CD;
(2)若M,N分別是AE,CD的中點,試判斷△BMN的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①是一個重要公式的幾何解釋.請你寫出這個公式;
(2)如圖②,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B、C、D三點在一條直線上.試證明∠ACE=90°;
(3)伽菲爾德(G a rfield,1881年任美國第20屆總統(tǒng))利用(1)中的公式和圖②證明了勾股定理(1876年4月1日,發(fā)表在《新英格蘭教育日志》上),現(xiàn)請你嘗試該證明過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com