如圖,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC,BC,過(guò)A,B,C三點(diǎn)作拋物線.
(1)求拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,連接BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
第三問(wèn)改成,在(2)的條件下,點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到精英家教網(wǎng)什么位置時(shí),△PCD的面積是△BCD面積的三分之一,求此時(shí)點(diǎn)P的坐標(biāo).
分析:(1)已知了A、B兩點(diǎn)的坐標(biāo)即可得出OA、OB的長(zhǎng),在直角三角形ACB中由于OC⊥AB,因此可用射影定理求出OC的長(zhǎng),即可得出C點(diǎn)的坐標(biāo).然后用待定系數(shù)法即可求出拋物線的解析式;
(2)本題的關(guān)鍵是得出D點(diǎn)的坐標(biāo),CD平分∠BCE,如果連接O′D,那么根據(jù)圓周角定理即可得出∠DO′B=2∠BCD=∠BCE=90°由此可得出D的坐標(biāo)為(4,-5).根據(jù)B、D兩點(diǎn)的坐標(biāo)即可用待定系數(shù)法求出直線BD的解析式;
(3)本題要分兩種情況進(jìn)行討論:
①過(guò)D作DP∥BC,交D點(diǎn)右側(cè)的拋物線于P,此時(shí)∠PDB=∠CBD,可先用待定系數(shù)法求出直線BC的解析式,然后根據(jù)BC與DP平行,那么直線DP的斜率與直線BC的斜率相同,因此可根據(jù)D的坐標(biāo)求出DP的解析式,然后聯(lián)立直線DP的解析式和拋物線的解析式即可求出交點(diǎn)坐標(biāo),然后將不合題意的舍去即可得出符合條件的P點(diǎn).
②同①的思路類似,先作與∠CBD相等的角:在O′B上取一點(diǎn)N,使BN=BM.可通過(guò)證△NBD≌△MDB,得出∠NDB=∠CBD,然后同①的方法一樣,先求直線DN的解析式,進(jìn)而可求出其與拋物線的交點(diǎn)即P點(diǎn)的坐標(biāo).
綜上所述可求出符合條件的P點(diǎn)的值.
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形相似及全等、探究角相等的構(gòu)成情況等知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)F的坐標(biāo)為(3,0),點(diǎn)A,B分別是某函數(shù)圖象與x軸、y軸的交點(diǎn),點(diǎn)P是此圖象上的一動(dòng)點(diǎn).設(shè)點(diǎn)P的橫坐標(biāo)為x,PF的長(zhǎng)為d,且d與x之間滿足關(guān)系:d=5-
35
x(0≤x≤5),給出以下四個(gè)結(jié)論:①AF=2;②BF=5;③OA=5;④OB=3.其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B的坐標(biāo)為(
3
2
,-2),點(diǎn)P在直線y=-x上運(yùn)動(dòng),當(dāng)|PA-PB|最大時(shí)點(diǎn)P的坐標(biāo)為(  )
A、(2,-2)
B、(4,-4)
C、(
5
2
,-
5
2
D、(5,-5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A的坐標(biāo)為(
3
,3),AB丄x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA、AB分別交于點(diǎn)C、D.若AB=3BD,以點(diǎn)C為圓心,CA的
5
4
倍的長(zhǎng)為半徑作圓,則該圓與x軸的位置關(guān)系是
 
(填”相離”,“相切”或“相交“).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)B的坐標(biāo)為(6,9),點(diǎn)A的坐標(biāo)為(6,6),點(diǎn)P為⊙A上一動(dòng)點(diǎn),PB的延長(zhǎng)線交⊙A于點(diǎn)N、直線CD⊥AP于點(diǎn)C,交PN于點(diǎn)D,交⊙A于E、F兩點(diǎn),且PC:CA=2:3.
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)使得點(diǎn)E為劣弧
PN
的中點(diǎn)時(shí),求證:DF=DN;
(2)在(1)的條件下求tan∠CDP的值;
(3)當(dāng)⊙A的半徑為5,且△APD的面積取得最大值時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A的坐標(biāo)為(
3
,3),AB⊥x軸,垂足為B,連接OA,反比例函數(shù)y=
3
x
的圖象與線段OA、AB分別交于點(diǎn)C、D.若以點(diǎn)C為圓心,CA的k倍的長(zhǎng)為半徑作圓,該圓與x軸相切,則k的值為
3+
3
4
3+
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案