解:(1)原式=4x
2-2x-1-{5x
2-[8x-2-3x
2-3x]-x
2}=4x
2-2x-1-{5x
2-8x+2+3x
2+3x-x
2}=4x
2-2x-1-5x
2+8x-2-3x
2-3x+x
2=-3x
2+3x-3
(2)原式=5abc-{2a
2b-[3abc-4ab
2+a
2b]}+3ab
2=5abc-{2a
2b-3abc+4ab
2-a
2b}+3ab
2=5abc-2a
2b+3abc-4ab
2+a
2b+3ab
2=8abc-a
2b-ab
2;將a,b,c的值代入得:原式=
(3)根據(jù)題意得,(x-2)
2+|xy-4|=0則,(x-2)
2=0,|xy-4|=0解得:x=2,y=2
原式=3x
2y+{-2x
2y-[-2xy+(x
2y-4x
2)-xy]+xy
2}=3x
2y+{-2x
2y-[-2xy+x
2y-4x
2-xy]+xy
2}=3x
2y+{-2x
2y+2xy-x
2y+4x
2+xy+xy
2}=3x
2y-2x
2y+2xy-x
2y+4x
2+xy+xy
2=4x
2+3xy+xy
2
將x=2,y=2代入得:原式=36
分析:(1)對(duì)同類項(xiàng)合并進(jìn)行化簡(jiǎn).
(2)先合并同類項(xiàng)化成最簡(jiǎn)式,然后求解.
(3)根據(jù)已知方程得到x,y的值.然后通過合并同類項(xiàng)將整式化簡(jiǎn)成最簡(jiǎn)式代入x,y的值求解.
點(diǎn)評(píng):對(duì)整式的化簡(jiǎn)首先去括號(hào),同時(shí)含有小括號(hào),中括號(hào),大括號(hào)的從里往外一層一層去括號(hào).在去括號(hào)時(shí)應(yīng)注意去掉括號(hào)后單項(xiàng)式應(yīng)變換符合.去完括號(hào)對(duì)整式進(jìn)行合并同類項(xiàng)來化簡(jiǎn).