【題目】邊長(zhǎng)相等的下列兩種正多邊形的組合,不能作平面鑲嵌的是( 。

A.正方形與正三角形B.正五邊形與正三角形

C.正六邊形與正三角形D.正八邊形與正方形

【答案】B

【解析】

分別求出各個(gè)正多邊形每個(gè)內(nèi)角的度數(shù),再結(jié)合鑲嵌的條件即可作出判斷.

解:A.正三角形的每個(gè)內(nèi)角是60°,正方形的每個(gè)內(nèi)角是90°,∵3×60°+2×90°=360°,能作平面鑲嵌.
B.正三角形的每個(gè)內(nèi)角是60°,正五邊形每個(gè)內(nèi)角是180°-360°÷5=108°,60m+108n=360°m=6-n,顯然n取任何正整數(shù)時(shí),m不能得正整數(shù),故不能作平面鑲嵌.
C.正三角形的每個(gè)內(nèi)角是60°,正六邊形的每個(gè)內(nèi)角是120°,∵2×60°+2×120°=360°,能作平面鑲嵌.
D.正八邊形的每個(gè)內(nèi)角是135°,正方形的每個(gè)內(nèi)角是90°,∵2×135°+90°=360°,能作平面鑲嵌.
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

1)如圖①所示是一個(gè)半徑為,高為4的圓柱體和它的側(cè)面展開圖,AB是圓柱的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓柱的側(cè)面爬行一周到達(dá)B點(diǎn),求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開,它的側(cè)面展開圖如圖①中的矩形則螞蟻爬行的最短路程即為線段的長(zhǎng))

2)如圖②所示是一個(gè)底面半徑為,母線長(zhǎng)為4的圓錐和它的側(cè)面展開圖,PA是它的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周后回到A點(diǎn),求螞蟻爬行的最短路程.

3)如圖③所示,在②的條件下,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周到達(dá)母線PA上的一點(diǎn),求螞蟻爬行的最短路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象軸上方的部分沿軸翻折到軸下方,圖象的其余部分保持不變,翻折后的圖象與原圖象軸下方的部分組成一個(gè)形狀的新圖象,若直線與該新圖象有兩個(gè)公共點(diǎn),則的取值范圍為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)M為拋物線x軸的焦點(diǎn)為A(-3,0),B(1,0),與y軸交于點(diǎn)C,連結(jié)AM,AC,點(diǎn)D為線段AM上一動(dòng)點(diǎn)(不與A重合),以CD為斜邊在CD上側(cè)作等腰RtDEC,連結(jié)AE,OE.

(1)求拋物線的解析式及頂點(diǎn)M的坐標(biāo);

(2)求解AD:OE的值;

(3)當(dāng)OEC為直角三角形時(shí),求AD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形網(wǎng)格上有6個(gè)三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②⑥中與①相似的是( )

A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月,某縣突降暴雨,造成山體滑坡,橋梁垮塌,房屋大面積受損,該省民政廳急需將一批帳篷送往災(zāi)區(qū).現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20件帳篷,且甲種貨車裝運(yùn)1 000件帳篷與乙種貨車裝運(yùn)800件帳篷所用車輛相等.

(1)求甲、乙兩種貨車每輛車可裝多少件帳篷;

(2)如果這批帳篷有1 490件,用甲、乙兩種汽車共16輛裝運(yùn),甲種車輛剛好裝滿,乙種車輛最后一輛只裝了50件,其余裝滿,求甲、乙兩種貨車各有多少輛.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD,ABECDF為直角三角形,∠AEB=CFD=90°,AE=CF=5,BE=DF=12,則EF的長(zhǎng)是( 。

A. 7 B. 8 C. 7 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°

1)求證:DEBC;

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示△ABC,AB=AC,AD⊥BC,點(diǎn)E、F分別是AB、AC的中點(diǎn).

(1)求證:四邊形AEDF是菱形;

(2)若四邊形AEDF的周長(zhǎng)為12,兩條對(duì)角線的和等于7,四邊形AEDF的面積記為S1,三 角形ABC的面積記為S2,S1與S2有何數(shù)量關(guān)系_____.(直接填答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案