【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣1,1),B(﹣3,1),C(﹣1,4).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)將△ABC繞著點B順時針旋轉(zhuǎn)90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留π).

【答案】
(1)

【解答】解:如圖所示,畫出△ABC關(guān)于y軸對稱的△A1B1C1


(2)

如圖所示,畫出△ABC繞著點B順時針旋轉(zhuǎn)90°后得到△A2BC2

線段BC旋轉(zhuǎn)過程中所掃過得面積S==


【解析】(1)根據(jù)題意畫出△ABC關(guān)于y軸對稱的△A1B1C1即可;
(2)根據(jù)題意畫出△ABC繞著點B順時針旋轉(zhuǎn)90°后得到△A2BC2 , 線段BC旋轉(zhuǎn)過程中掃過的面積為扇形BCC2的面積,求出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的實數(shù)).其中正確結(jié)論的有(
A.①②③
B.①③④
C.③④⑤
D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是某手機店1~4月份的統(tǒng)計圖,分析統(tǒng)計圖,對3、4月份三星手機的銷售情況四個同學(xué)得出的以下四個結(jié)論,其中正確的為(
A.4月份三星手機銷售額為65萬元
B.4月份三星手機銷售額比3月份有所上升
C.4月份三星手機銷售額比3月份有所下降
D.3月份與4月份的三星手機銷售額無法比較,只能比較該店銷售總額

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點,且AB=CD,下列結(jié)論中正確的有(填上所有正確結(jié)論的序號) ①GH∥DC;
②EG∥AD;
③EH=FG;
④當(dāng)∠ABC與∠DCB互余時,四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,設(shè)AB=c,BC=a,AC=b,中線AE,BF相交于G,若AE⊥BF.

(1)①當(dāng)∠ABF=60°,c=4時,求a與b的值;
②當(dāng)∠ABF=30°,c=2 時,a= , b=;
(2)由(1)獲得啟示,猜想a2 , b2 , c2三者之間滿足數(shù)量關(guān)系式是;(直接寫出結(jié)果)
(3)如圖2,在平行四邊形ABCD中,AB=4 ,BC=3 ,點E,F(xiàn),G分別是AD,AB,CD的中點,CF與BG交于P點,若EF⊥FC.利用(2)中的結(jié)論,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A、B是拋物線y=ax2(a>0)上兩個不同的點,其中A在第二象限,B在第一象限,

(1)如圖1所示,當(dāng)直線AB與x軸平行,∠AOB=90°,且AB=2時,求此拋物線的解析式和A、B兩點的橫坐標(biāo)的乘積.
(2)如圖2所示,在1所求得的拋物線上,當(dāng)直線AB與x軸不平行,∠AOB仍為90°時,A、B兩點的橫坐標(biāo)的乘積是否為常數(shù)?如果是,請給予證明;如果不是,請說明理由.
(3)在2的條件下,若直線y=﹣2x﹣2分別交直線AB,y軸于點P、C,直線AB交y軸于點D,且∠BPC=∠OCP,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=(x2﹣7x+6)的頂點坐標(biāo)為M,與x軸相交于A,B兩點(點B在點A的右側(cè)),與y軸相交于點C.

(1)用配方法將拋物線的解析式化為頂點式:y=a(x﹣h)2+k(a≠0),并指出頂點M的坐標(biāo);
(2)在拋物線的對稱軸上找點R,使得CR+AR的值最小,并求出其最小值和點R的坐標(biāo);
(3)以AB為直徑作⊙N交拋物線于點P(點P在對稱軸的左側(cè)),求證:直線MP是⊙N的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是⊙O的直徑,AD是⊙O的切線,切點為D,AD與CB的延長線交于點A,∠C=30°,給出下面四個結(jié)論:
①AD=DC;②AB=BD;③AB=BC;④BD=CD, 其中正確的個數(shù)為( 。

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,對角線AC與BD相交于點O,點E在DC邊的延長線上.若∠CAE=15°,則AE=

查看答案和解析>>

同步練習(xí)冊答案