【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo);
(2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2BC2;
(3)求出(2)中C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(結(jié)果保留根號和π);
(4)求出(2)△A2BC2的面積是多少.
【答案】(1)畫圖見解析,點A1的坐標(biāo)為(2,﹣4);(2)畫圖見解析;(3)π;(4)3.5.
【解析】
(1)根據(jù)關(guān)于x軸對稱的點的坐標(biāo)特征,寫出點A、B、C的對應(yīng)點A1、B1、C1的坐標(biāo),然后描點即可得到△A1B1C1;
(2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì),畫出點A、C的對應(yīng)點A2、C2,則可得到△A2BC2;
(3)C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑是以B點為圓心,BC為半徑,圓心角為90°的弧,然后根據(jù)弧長公式計算即可;
(4)利用一個矩形的面積分別減去三個三角形的面積可計算出△A2BC2的面積.
(1)如圖,△A1B1C1為所作,點A1的坐標(biāo)為(2,﹣4);
(2)如圖,△A2BC2為所作;
(3),
所以C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長
(4)△A2BC2的面積
科目:初中數(shù)學(xué) 來源: 題型:
【題目】恒昌路是一條東西走向的馬路,有市場、醫(yī)院、車站、學(xué)校四家公共場所。已知市場在醫(yī)院東200米,車站在市場東150米,醫(yī)院在學(xué)校東450米。若將馬路近似的看成一條直線,以醫(yī)院為原點,向東方向為正方向,用1個單位長度表示100米,
(1)在數(shù)軸上表示出四家公共場所的位置;
(2)列式計算學(xué)校與車站之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明.如圖,已知AB∥CD,∠B=∠C,
求證:∠1=∠2.
證明:∵AB∥CD(已知)
∴∠B= ( ).
∵∠B=∠C(已知)
∴∠BFD=∠C(等量代換)
∴EC∥ ( )
∴∠2= (兩直線平行,同位角相等)
∵∠1= ( )
∴∠1=∠2(等量代換).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校設(shè)計了如圖所示的雕塑,取名“階梯”, 現(xiàn)在工廠師傅打算用油漆噴刷所有暴露面,經(jīng)測量,已知每個小立方體的棱長為0.5米.
(1)請你畫出從它的正面、左面、上面三個不同方向看到的平面圖形.
(2)請你幫助工人師傅計算一下,需要噴刷油漆的總面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡,再求值:(3x﹣6)(x2﹣)﹣6x(x2﹣x﹣6),其中x=﹣.
(2)已知y2﹣5y+3=0,求2(y﹣1)(2y﹣1)﹣2(y+1)2+7的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長江汛期即將來臨,防汛指揮部在一危險地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖,燈A射線自AM順時針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動的速度是a度/秒,燈B轉(zhuǎn)動的速度是b度/秒,且a,b滿足|a﹣3b﹣1|+(a+b﹣5)2=0.假定這一帶長江兩岸河堤是平行的,即PQ∥MN,且∠BAN=45°.
(1)求a,b的值;
(2)若兩燈同時轉(zhuǎn)動,經(jīng)過42秒,兩燈射出的光束交于C,求此時∠ACB的度數(shù);
(3)若燈B射線先轉(zhuǎn)動10秒,燈A射線才開始轉(zhuǎn)動,在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意有理數(shù)a,b,定義運算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.
(1)求(﹣2)⊙3的值;
(2)對于任意有理數(shù)m,n,請你重新定義一種運算“⊕”,使得5⊕3=20,寫出你定義的運算:m⊕n= (用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD的長AD=9 cm,寬AB=3 cm,將其沿EF折疊,使點D與點B重合.
(1)求證:DE=BF;
(2)求BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com