【題目】“綠色出行,低碳健身”已成為廣大市民的共識.為方便市民出行,東臺市推出了公共自行車系統(tǒng),收費以小時為單位,每次使用不超過1小時的免費,超過1小時后,不足1小時的部分按1小時收費.小紅同學(xué)通過調(diào)查得知,自行車使用時間為3小時,收費2元;使用時間為4小時,收費3元.她發(fā)現(xiàn)當(dāng)使用時間超過1小時后用車費用與使用時間之間存在一次函數(shù)的關(guān)系.
(1)設(shè)使用自行車的費用為元,使用時間為小時(為大于1的整數(shù)),求與的函數(shù)解析式;
(2)若小紅此次使用公共自行車5小時,則她應(yīng)付多少元費用?
(3)若小紅此次使用公共自行車付費6元,求她所使用自行車的時間.
【答案】(1)y=x-1;(2)4元;(3)大于6小時且不超過7小時
【解析】
(1)設(shè)一次函數(shù)的解析式為y=kx+b,利用待定系數(shù)法解答即可;
(2)把x=5代入解析式解答即可;
(3)把y=6代入解析式解答即可.
解:(1)設(shè)一次函數(shù)的解析式為y=kx+b,
可得: ,
解得: ,
所以y與x的函數(shù)解析式為:y=x-1;
(2)把x=5代入y=x-1=4,
答:小紅此次使用公共自行車5小時,則她應(yīng)付4元費用;
(3)把y=6代入解析式y=x-1,
解得:x=7,
所以可得她所使用的時間6<x≤7小時.
答:她所使用自行車的時間為大于6小時且不超過7小時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市三景區(qū)是人們節(jié)假日游玩的熱點景區(qū),某學(xué)校對九(1)班學(xué)生“五一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調(diào)查,調(diào)查分四個類別,A:三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩,現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖如下:
請結(jié)合圖中信息解答下列問題:
(1)九(1)班現(xiàn)有學(xué)生人,在扇形統(tǒng)計圖中表示“B類別”的扇形的圓心角的度數(shù)為;
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)若該校九年級有1000名學(xué)生,求計劃“五一”小長假隨父母到這三個景區(qū)游玩的學(xué)生多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶樱蚩梢郧蟪鲆恍┎灰(guī)則圖形的面積.
(1)如圖1,是將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的方法計算這個圖形的面積,你能發(fā)現(xiàn)什么結(jié)論,請寫出來.
(2)如圖2,是將兩個邊長分別為a和b的正方形拼在一起,B、C、G三點在同一直線上,連接BD和BF,若兩正方形的邊長滿足a+b=10,ab=20,你能求出陰影部分的面積嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在哈市地鐵一號線施工建設(shè)中,安排甲、乙兩個工程隊完成大連北路至新疆大街路段的鐵軌鋪設(shè)任務(wù),該路段全長3600米.已知甲隊每天鋪設(shè)鐵軌的米數(shù)是乙隊每天鋪設(shè)鐵軌米數(shù)的1.5倍,并且甲、乙兩隊分別單獨完成600米長度路段時,甲隊比乙隊少用10天.
(1)求甲、乙兩個工程隊每天各能鋪設(shè)鐵軌多少米?
(2)若甲隊每天施工的費用為4萬元,乙隊每天施工的費用為3萬元,要使甲、乙兩隊合作完成大連北路至新疆大街全長3600米的總費用不超過520萬元,則至少應(yīng)安排甲隊施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,2條直線相交有1個交點,3條直線相交最多有3個交點,4條直線相交最多有6個交點…按這樣的規(guī)律若n條直線相交交點最多有28個,則此時n的值為( 。
A. 18 B. 10 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一根繩子對折成一條線段AB,在線段AB取一點P,使AP=,從P處把繩子剪斷,若剪斷后的三段繩子中最長的一段為30cm,則繩子的原長為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1所示,等腰直角三角形ABC中,∠BAC=90O,AB=AC,直線MN經(jīng)過點A,BD⊥MN于點D,CE⊥MN于點E.
(1)試判斷線段DE、BD、CE之間的數(shù)量關(guān)系,并說明理由;
(2)當(dāng)直線MN運動到如圖2所示位置時,其余條件不變,判斷線段DE、BD、CE之間的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,請證明:BD=AB﹣AF;
(2)試探索:點D在AB的延長線或反向延長線上時,請在備用圖中畫出圖形,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論(不需要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知線段AB、CD相交于點O,連接AC、BD,則我們把形如這樣的圖形稱為“8字型”.
(1)求證:∠A+∠C=∠B+D;
(2)如圖2,若∠CAB和∠BDC的平分線AP和DP相交于點P,且與CD、AB分別相交于點M、N.
①以線段AC為邊的“8字型”有 個,以點O為交點的“8字型”有 個;
②若∠B=100°,∠C=120°,求∠P的度數(shù);
③若角平分線中角的關(guān)系改為“∠CAP=∠CAB,∠CDP=∠CDB”,試探究∠P與∠B、∠C之間存在的數(shù)量關(guān)系,并證明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com