精英家教網 > 初中數學 > 題目詳情
(2008•佛山)如圖,P為平行四邊形ABCD的對稱中心,以P為圓心作圓,過P的任意直線與圓相交于點M,N.則線段BM,DN的大小關系是( )

A.BM>DN
B.BM<DN
C.BM=DN
D.無法確定
【答案】分析:根據P為平行四邊形ABCD的對稱中心,可推出△DNP≌△BMP,從而可得到BM=DN.
解答:解:如圖,連接BD,
∵P是?ABCD的對稱中心,則P是平行四邊形兩對角線的交點,即BD必過點P,
∴DP=BP,圓的半徑PN=PM,由對頂角相等∠DPN=∠BPM,
∵PM=PN,PD=PB
∴△DNP≌△BMP,
∴BM=DN.
故選C.
點評:平行四邊形的對稱中心是兩條對角線的交點,考查了學生對平行四邊形性質的掌握及全等三角形的判定定理.
練習冊系列答案
相關習題

科目:初中數學 來源:2008年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2008•佛山)如圖,某隧道橫截面的上下輪廓線分別由拋物線對稱的一部分和矩形的一部分構成,最大高度為6米,底部寬度為12米.現以O點為原點,OM所在直線為x軸建立直角坐標系.
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求出這條拋物線的函數解析式;
(3)若要搭建一個矩形“支撐架”AD+DC+CB,使C、D點在拋物線上,A、B點在地面OM上,這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目:初中數學 來源:2010年河南省中考數學模擬試卷(11)(解析版) 題型:解答題

(2008•佛山)如圖,某隧道橫截面的上下輪廓線分別由拋物線對稱的一部分和矩形的一部分構成,最大高度為6米,底部寬度為12米.現以O點為原點,OM所在直線為x軸建立直角坐標系.
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求出這條拋物線的函數解析式;
(3)若要搭建一個矩形“支撐架”AD+DC+CB,使C、D點在拋物線上,A、B點在地面OM上,這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目:初中數學 來源:2009年河北省唐山市中考數學一模試卷(解析版) 題型:解答題

(2008•佛山)如圖,某隧道橫截面的上下輪廓線分別由拋物線對稱的一部分和矩形的一部分構成,最大高度為6米,底部寬度為12米.現以O點為原點,OM所在直線為x軸建立直角坐標系.
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求出這條拋物線的函數解析式;
(3)若要搭建一個矩形“支撐架”AD+DC+CB,使C、D點在拋物線上,A、B點在地面OM上,這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目:初中數學 來源:2009年廣東省揭陽市普寧市燎原中學中考數學二模試卷(解析版) 題型:解答題

(2008•佛山)如圖,某隧道橫截面的上下輪廓線分別由拋物線對稱的一部分和矩形的一部分構成,最大高度為6米,底部寬度為12米.現以O點為原點,OM所在直線為x軸建立直角坐標系.
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求出這條拋物線的函數解析式;
(3)若要搭建一個矩形“支撐架”AD+DC+CB,使C、D點在拋物線上,A、B點在地面OM上,這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目:初中數學 來源:2008年廣東省佛山市中考數學試卷(解析版) 題型:解答題

(2008•佛山)如圖,某隧道橫截面的上下輪廓線分別由拋物線對稱的一部分和矩形的一部分構成,最大高度為6米,底部寬度為12米.現以O點為原點,OM所在直線為x軸建立直角坐標系.
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求出這條拋物線的函數解析式;
(3)若要搭建一個矩形“支撐架”AD+DC+CB,使C、D點在拋物線上,A、B點在地面OM上,這個“支撐架”總長的最大值是多少?

查看答案和解析>>

同步練習冊答案