【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),點(diǎn)Aa,0),Bm,n),Cp,n),其中mp0,n0,點(diǎn)AC在直線y=﹣2x+10上,AC2,OB平分∠AOC

1)求OAC的面積;

2)求證:四邊形OABC是菱形;

3)射線OB上是否存在點(diǎn)P,使得PAC為直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1SAOC10;(2)見解析;(3)存在,理由見解析.P2,1)或(6,3).

【解析】

1)先根據(jù)點(diǎn)Aa0)在直線y=-2x+10上,求得點(diǎn)A的坐標(biāo),在RtACE中,根據(jù)勾股定理列出方程(5-p2+n2=22,再根據(jù)點(diǎn)Cp,n)在直線y=-2x+10上,得到方程n=-2p+10,進(jìn)而求得np的值,根據(jù)點(diǎn)C的坐標(biāo),即可得出結(jié)論;

2)求得OC的長(zhǎng),最后根據(jù)菱形的定義判定四邊形OABC是菱形;

3)先判斷出∠APC=90°,再求出直線OB的解析式,利用等腰直角三角形的性質(zhì)建立方程即可得出結(jié)論.

1點(diǎn)Aa,0)在直線y=﹣2x+10上,

∴0=﹣2a+10,即a5,

A5,0),即OA5,

CCEOA于點(diǎn)E,

AEC90°AE5p,

Rt△ACE中,AE2+CE2AC2,

5p2+n2=(22

點(diǎn)Cp,n)在直線y=﹣2x+10上,

n=﹣2p+10,

5p2+(﹣2p+102=(22,

解得p13,p27

當(dāng)p3時(shí),n4;當(dāng)p7時(shí),n=﹣4(舍去),

C3,4),SAOCOA×|yC|×5×410;

2)在Rt△OCE中,OC5,

OCOA

OB平分AOC,

∴∠1∠2,

Bm,n),Cp,n),

BCx軸,

∴∠3∠2,

∴∠1∠3,

OCBC5,

OABC,且OABC,

四邊形OABC是平行四邊形,

OCOA,

平行四邊形OABC是菱形;

3)存在,理由:

如圖1,

四邊形OABC是菱形,

ADCD,ACOB

A5,0),C34),

D42),B8,4),

設(shè)直線OB的解析式為ykx,

∴8k4

k,

直線OB的解析式為yx,

設(shè)Pm,m),

DP|m4|,

∵△PAC為直角三角形,

∴∠APC90°

DPADCDAC,

|m4|,

m2m6,

P21)或(6,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn))x45x2+40是一個(gè)一元四次方程.

(探索)根據(jù)該方程的特點(diǎn),通常用換元法解方程:

設(shè)x2y,那么x4   ,于是原方程可變?yōu)?/span>   

解得:y11,y2   

當(dāng)y1時(shí),x21,∴x±1;

當(dāng)y   時(shí),x2   ,∴x   ;

原方程有4個(gè)根,分別是   

(應(yīng)用)仿照上面的解題過程,求解方程:(x22x2+x22x)﹣60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為P1,4),拋物線與y軸交于點(diǎn)C0,3),與x軸交于A、B兩點(diǎn).

1)求此拋物線的解析式;

2)求四邊形OBPC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達(dá)到了3600元.

1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長(zhǎng)率;

2)若年平均增長(zhǎng)率保持不變,2019年該貧困戶的家庭年人均純收入是否能達(dá)到4200元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20141月,國(guó)家發(fā)改委出臺(tái)指導(dǎo)意見,要求2015年底前,所有城市原則上全面實(shí)行居民階梯水價(jià)制度. 小軍為了解市政府調(diào)整水價(jià)方案的社會(huì)反響,隨機(jī)訪問了自己居住在小區(qū)的部分居民,就每月每戶的用水量調(diào)價(jià)對(duì)用水行為改變兩個(gè)問題進(jìn)行調(diào)查,并把調(diào)查結(jié)果整理成下面的圖1,圖2.

小軍發(fā)現(xiàn)每月每戶的用水量在5m3-35m3之間,有7戶居民對(duì)用水價(jià)格調(diào)價(jià)漲幅抱無所謂,不用考慮用水方式的改變. 根據(jù)小軍繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:

1n =________,小明調(diào)查了_____戶居民,并補(bǔ)全圖1;

2)每月每戶用水量的中位數(shù)落在______之間,眾數(shù)落在_______之間;

3)如果小明所在的小區(qū)有1200戶居民,請(qǐng)你估計(jì)視調(diào)價(jià)漲幅采取相應(yīng)的用水方式改變的居民戶數(shù)有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在綜合實(shí)踐活動(dòng)中對(duì)本地的一座古塔進(jìn)行了測(cè)量.如圖,他在山坡坡腳P處測(cè)得古塔頂端M的仰角為,沿山坡向上走25m到達(dá)D處,測(cè)得古塔頂端M的仰角為.已知山坡坡度,即,請(qǐng)你幫助小明計(jì)算古塔的高度ME.(結(jié)果精確到0.1m,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=a(x+2)2+m過原點(diǎn),與拋物線y2=(x﹣3)2+n交于點(diǎn)A(1,3),過點(diǎn)Ax軸的平行線,分別交兩條拋物線于點(diǎn)B,C.下列結(jié)論:兩條拋物線的對(duì)稱軸距離為5;②x=0時(shí),y2=5;③當(dāng)x>3時(shí),y1﹣y2>0;④y軸是線段BC的中垂線.正確結(jié)論是________(填寫正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù),當(dāng)時(shí),的最小值為,最大值為,則的值為(

A. 2B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點(diǎn)G.

(1)求證:AE=CF;

(2)若∠ABE=55°,求∠EGC的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案