如圖,已知點A是以MN為直徑的半圓上一個三等分點,點B是數(shù)學公式的中點,點P是半徑ON上的點.若⊙O的半徑為l,則AP+BP的最小值為


  1. A.
    2
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:本題是要在MN上找一點P,使PA+PB的值最小,設(shè)A′是A關(guān)于MN的對稱點,連接A′B,與MN的交點即為點P.此時PA+PB=A′B是最小值,可證△OA′B是等腰直角三角形,從而得出結(jié)果.1
解答:作點A關(guān)于MN的對稱點A′,連接A′B,交MN于點P,則PA+PB最小,
連接OA′,AA′,OB,
∵點A與A′關(guān)于MN對稱,點A是半圓上的一個三等分點,
∴∠A′ON=∠AON=60°,PA=PA′,
∵點B是弧AN^的中點,
∴∠BON=30°,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=1,
∴A′B=
∴PA+PB=PA′+PB=A′B=
故選B.
點評:正確確定P點的位置是解題的關(guān)鍵,確定點P的位置這類題在課本中有原題,因此加強課本題目的訓練至關(guān)重要.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點A是以MN為直徑的半圓上一個三等分點,點B是AN的中點,點P是半徑ON上的點,若⊙O的半徑為1,則AP+BP的最小值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•德陽)如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.
(1)求證:AE•FD=AF•EC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點A是以MN為直徑的半圓上一個三等分點,點B是
AN
的中點,點P是半徑ON上的點.若⊙O的半徑為l,則AP+BP的最小值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點M是以AB為直徑的半圓上的一個三等分點,點N是弧BM的中點,點P是直徑AB上的點.若⊙O的半徑為1.
(1)用尺規(guī)在圖中作出點P,使MP+NP的值最。ūA糇鲌D痕跡,不寫作法);
(2)求MP+NP的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(四川德陽卷)數(shù)學(帶解析) 題型:解答題

如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O 的切線交直線AC于點D,點E為CH的中點,連結(jié)并延交BD于點F,直線CF交AB的延長線于G.
⑴求證:AE·FD=AF·EC;
⑵求證:FC=FB;
⑶若FB=FE=2,求⊙O 的半徑r的長.

查看答案和解析>>

同步練習冊答案