【題目】折紙不僅可以幫助我們進(jìn)行證明,還可以幫助我們進(jìn)行計(jì)算.小明取了一張正方形紙片,按照如圖所示的方法折疊(如圖①②③):

重新展開(kāi)后得到如圖所示的正方形ABCD(如圖④),BD、BE、EF為前面折疊的折痕.小亮觀察之后發(fā)現(xiàn)利用這個(gè)圖形可以求出45°、22.5°等角的三角函數(shù)值.請(qǐng)你直接寫(xiě)出tan67.5°=_____

【答案】

【解析】

設(shè)EC=x,根據(jù)折疊的性質(zhì)求出∠BEC=67.5°,DE=x,根據(jù)正切的概念計(jì)算即可

設(shè)EC=x,

由折疊的性質(zhì)可知,EF=EC=x,BFE=C=90°,BDC=45°,EBC=22.5°,

DE=EF=x,BEC=67.5°,

CD=x+x,

由正方形的性質(zhì)可知,BC=CD=x+x,

tan67.5°=tanBEC==

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某運(yùn)動(dòng)鞋經(jīng)銷商隨機(jī)調(diào)查某校40名女生的運(yùn)動(dòng)鞋號(hào)碼,結(jié)果如下表:

鞋的號(hào)碼

35.5

36

36.5

37

37.5

人數(shù)

4

6

16

12

2

現(xiàn)在該經(jīng)銷商要進(jìn)200雙上述五種女運(yùn)動(dòng)鞋,你認(rèn)為應(yīng)該怎樣進(jìn)貨比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Ax1,y1)、Bx2,y2在二次函數(shù)y=x2+mx+n的圖象上,當(dāng)x1=1x2=3時(shí),y1=y2

1①求m②若拋物線與x軸只有一個(gè)公共點(diǎn),n的值

2Pa,b1),Q3,b2)是函數(shù)圖象上的兩點(diǎn),b1b2求實(shí)數(shù)a的取值范圍

3若對(duì)于任意實(shí)數(shù)x1、x2都有y1+y2≥2,n的范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,平分,交,,下列結(jié)論:①;②;③;④,其中正確的結(jié)論有____________. (填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)點(diǎn)C,交AB于點(diǎn)D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)連接OC,若BD=BC,求OC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠MAN=120°,點(diǎn)C是∠MAN的平分線AQ上的一個(gè)定點(diǎn),點(diǎn)BD分別在AN,AM上,連接BD

【發(fā)現(xiàn)】

1)如圖1,若∠ABC=ADC=90°,則∠BCD=   °,CBD   三角形;

【探索】

2)如圖2,若∠ABC+ADC=180°,請(qǐng)判斷CBD的形狀,并證明你的結(jié)論;

【應(yīng)用】

3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點(diǎn)G,H分別在射線OE,OF上,且PGH為等邊三角形,則滿足上述條件的PGH的個(gè)數(shù)一共有   .(只填序號(hào))

2個(gè)3個(gè)4個(gè)4個(gè)以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,的三個(gè)頂點(diǎn)的坐標(biāo)分別為,

1)畫(huà)出將向上平移2個(gè)單位長(zhǎng)度,再向左平移5個(gè)單位長(zhǎng)度后得到的

2)畫(huà)出將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90°得到的;

3)在軸上存在一點(diǎn),滿足點(diǎn)到點(diǎn)與點(diǎn)的距離之和最小,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)P在線段AB外,且PA=PB,求證:點(diǎn)P在線段AB的垂直平分線上,在證明該結(jié)論時(shí),需添加輔助線,則作法不正確的是( 。

A. 作∠APB的平分線PCAB于點(diǎn)C

B. 過(guò)點(diǎn)PPCAB于點(diǎn)CAC=BC

C. AB中點(diǎn)C,連接PC

D. 過(guò)點(diǎn)PPCAB,垂足為C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,兩個(gè)不全等的等腰直角三角形疊放在一起,并且有公共的直角頂點(diǎn).

1)在圖1中,你發(fā)現(xiàn)線段的數(shù)量關(guān)系是______.直線相交成_____度角.

2)將圖1繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°,連接得到圖2,這時(shí)(1)中的兩個(gè)結(jié)論是否成立?請(qǐng)作出判斷說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案