【題目】如圖,已知菱形中,,為鈍角,于點(diǎn),的中點(diǎn),連接,.,則過、、三點(diǎn)的外接圓半徑為______.

【答案】

【解析】

通過延長(zhǎng)MNDA延長(zhǎng)線于點(diǎn)EDFBC,構(gòu)造全等三角形,根據(jù)全等性質(zhì)證出DE=DM,,再通過AE=BM=CF,RtDMFRtDCF中,利用勾股定理列方程求DM長(zhǎng),根據(jù)圓的性質(zhì)即可求解.

如圖,延長(zhǎng)MNDA延長(zhǎng)線于點(diǎn)E,過DDFBCBC延長(zhǎng)線于F,連接MD,

∵四邊形ABCD是菱形,

AB=BC=CD=4ADBC,

∴∠E=EMB, EAN=NBM,

AN=BN,

∴△EANBMN,

AE=BM,EN=MN,

,

DNEM,

DE=DM,

AMBC,DFBC,AB=DC,AM=DF

∴△ABM≌△DCF,

BM=CF,

設(shè)BM=x,DE=DM=4+x,

RtDMF中,由勾股定理得,DF2=DM2-MF2=(4+x)2-42,

RtDCF中,由勾股定理得,DF2=DC2-CF2=4 2-x2,

(4+x)2-42=4 2-x2,

解得,x1=,x2=(不符合題意,舍去)

DM=,

∴過、三點(diǎn)的外接圓的直徑為線段DM,

∴其外接圓的半徑長(zhǎng)為.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)AB的坐標(biāo)分別為(4,0),(3,2).

1)畫出AOB關(guān)于原點(diǎn)O對(duì)稱的圖形COD;

2)將AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到EOF,畫出EOF;

3)點(diǎn)D的坐標(biāo)是   ,點(diǎn)F的坐標(biāo)是   ,此圖中線段BFDF的關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE

1)求證:AE⊙O的切線;

2)如果AB=4,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:方程cx2+bx+a0是一元二次方程ax2+bx+c0的倒方程.

1)已知x2x2+2x+c0的倒方程的解,求c的值;

2)若一元二次方程ax22x+c0無解,求證:它的倒方程也一定無解;

3)一元二次方程ax22x+c0a≠c)與它的倒方程只有一個(gè)公共解,它的倒方程只有一個(gè)解,求ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P在射線BC上(異于點(diǎn)B、C),直線AP與對(duì)角線BD及射線DC分別交于點(diǎn)F、Q

(1)若BP=,求BAP的度數(shù);

(2)若點(diǎn)P在線段BC上,過點(diǎn)F作FGCD,垂足為G,當(dāng)FGC≌△QCP時(shí),求PC的長(zhǎng);

(3)以PQ為直徑作M.

①判斷FC和M的位置關(guān)系,并說明理由;

②當(dāng)直線BD與M相切時(shí),直接寫出PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191217日,我國(guó)第一艘國(guó)產(chǎn)航母山東艦在海南三亞交付海軍.如圖,山東艦在一次試水測(cè)試中,航行至處,觀測(cè)指揮塔位于南偏西方向,在沿正南方向以30海里/小時(shí)的速度勻速航行2小時(shí)后,到達(dá)處,再觀測(cè)指揮塔位于南偏西方向,若繼續(xù)向南航行.山東艦與指揮塔之間的最近距離為多少海里?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線)與,軸分別交于兩點(diǎn),以為邊在直線的上方作正方形,反比例函數(shù)的圖象分別過點(diǎn)和點(diǎn).,則的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李寧準(zhǔn)備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.

1)他把“□”猜成3,請(qǐng)你解二元一次方程組

2)張老師說:“你猜錯(cuò)了”,我看到該題標(biāo)準(zhǔn)答案的結(jié)果xy是一對(duì)相反數(shù),通過計(jì)算說明原題中“□”是幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們研究過的圖形中,圓的任何一對(duì)平行切線的距離總是相等的,所以圓是等寬曲線”.除了圓以外,還有一些幾何圖形也是等寬曲線,如勒洛三角形(如圖),它是分別以等邊三角形的每個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間畫一段圓弧,三段圓弧圍成的曲邊三角形. 是等寬的勒洛三角形和圓形滾木的截面圖.

有如下四個(gè)結(jié)論:

①勒洛三角形是中心對(duì)稱圖形

②圖中,點(diǎn)上任意一點(diǎn)的距離都相等

③圖中,勒洛三角形的周長(zhǎng)與圓的周長(zhǎng)相等

④使用截面是勒洛三角形的滾木來搬運(yùn)東西,會(huì)發(fā)生上下抖動(dòng)

上述結(jié)論中,所有正確結(jié)論的序號(hào)是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案