【題目】如圖,已知菱形中,,為鈍角,于點(diǎn),為的中點(diǎn),連接,.若,則過、、三點(diǎn)的外接圓半徑為______.
【答案】
【解析】
通過延長(zhǎng)MN交DA延長(zhǎng)線于點(diǎn)E,DF⊥BC,構(gòu)造全等三角形,根據(jù)全等性質(zhì)證出DE=DM,,再通過AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM長(zhǎng),根據(jù)圓的性質(zhì)即可求解.
如圖,延長(zhǎng)MN交DA延長(zhǎng)線于點(diǎn)E,過D作DF⊥BC交BC延長(zhǎng)線于F,連接MD,
∵四邊形ABCD是菱形,
∴AB=BC=CD=4,AD∥BC,
∴∠E=∠EMB, ∠EAN=∠NBM,
∵AN=BN,
∴△EAN≌BMN,
∴AE=BM,EN=MN,
∵,
∴DN⊥EM,
∴DE=DM,
∵AM⊥BC,DF⊥BC,AB=DC,AM=DF
∴△ABM≌△DCF,
∴BM=CF,
設(shè)BM=x,則DE=DM=4+x,
在Rt△DMF中,由勾股定理得,DF2=DM2-MF2=(4+x)2-42,
在Rt△DCF中,由勾股定理得,DF2=DC2-CF2=4 2-x2,
∴(4+x)2-42=4 2-x2,
解得,x1=,x2=(不符合題意,舍去)
∴DM=,
∴
∴過、、三點(diǎn)的外接圓的直徑為線段DM,
∴其外接圓的半徑長(zhǎng)為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A,B的坐標(biāo)分別為(4,0),(3,2).
(1)畫出△AOB關(guān)于原點(diǎn)O對(duì)稱的圖形△COD;
(2)將△AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到△EOF,畫出△EOF;
(3)點(diǎn)D的坐標(biāo)是 ,點(diǎn)F的坐標(biāo)是 ,此圖中線段BF和DF的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=4,AE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:方程cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.
(1)已知x=2是x2+2x+c=0的倒方程的解,求c的值;
(2)若一元二次方程ax2﹣2x+c=0無解,求證:它的倒方程也一定無解;
(3)一元二次方程ax2﹣2x+c=0(a≠c)與它的倒方程只有一個(gè)公共解,它的倒方程只有一個(gè)解,求a和c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P在射線BC上(異于點(diǎn)B、C),直線AP與對(duì)角線BD及射線DC分別交于點(diǎn)F、Q.
(1)若BP=,求∠BAP的度數(shù);
(2)若點(diǎn)P在線段BC上,過點(diǎn)F作FG⊥CD,垂足為G,當(dāng)△FGC≌△QCP時(shí),求PC的長(zhǎng);
(3)以PQ為直徑作⊙M.
①判斷FC和⊙M的位置關(guān)系,并說明理由;
②當(dāng)直線BD與⊙M相切時(shí),直接寫出PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年12月17日,我國(guó)第一艘國(guó)產(chǎn)航母“山東艦”在海南三亞交付海軍.如圖,“山東艦”在一次試水測(cè)試中,航行至處,觀測(cè)指揮塔位于南偏西方向,在沿正南方向以30海里/小時(shí)的速度勻速航行2小時(shí)后,到達(dá)處,再觀測(cè)指揮塔位于南偏西方向,若繼續(xù)向南航行.求“山東艦”與指揮塔之間的最近距離為多少海里?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線:()與,軸分別交于,兩點(diǎn),以為邊在直線的上方作正方形,反比例函數(shù)和的圖象分別過點(diǎn)和點(diǎn).若,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李寧準(zhǔn)備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.
(1)他把“□”猜成3,請(qǐng)你解二元一次方程組;
(2)張老師說:“你猜錯(cuò)了”,我看到該題標(biāo)準(zhǔn)答案的結(jié)果x、y是一對(duì)相反數(shù),通過計(jì)算說明原題中“□”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們研究過的圖形中,圓的任何一對(duì)平行切線的距離總是相等的,所以圓是“等寬曲線”.除了圓以外,還有一些幾何圖形也是“等寬曲線”,如勒洛三角形(如圖),它是分別以等邊三角形的每個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間畫一段圓弧,三段圓弧圍成的曲邊三角形. 圖是等寬的勒洛三角形和圓形滾木的截面圖.
圖 圖
有如下四個(gè)結(jié)論:
①勒洛三角形是中心對(duì)稱圖形
②圖中,點(diǎn)到上任意一點(diǎn)的距離都相等
③圖中,勒洛三角形的周長(zhǎng)與圓的周長(zhǎng)相等
④使用截面是勒洛三角形的滾木來搬運(yùn)東西,會(huì)發(fā)生上下抖動(dòng)
上述結(jié)論中,所有正確結(jié)論的序號(hào)是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com