【題目】我市某綠色無公害蔬菜基地有甲、乙兩種植戶,他們們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶 | 種植A類蔬菜面積(單位:畝) | 種植B類蔬菜面積(單位:畝) | 總收入(單位:元) |
甲 | 1 | 3 | 13500 |
乙 | 2 | 2 | 13000 |
說明:不同種植戶種植的同類蔬菜每畝平均收入相等
(1)求A、B兩類蔬菜每畝平均收入各是多少元?
(2)今年甲、乙兩種植戶聯(lián)合種植,計(jì)劃合租50畝地用來種植A、B兩類蔬菜,為了使總收入不低于16400元,問聯(lián)合種植最多可以種植A類蔬菜多少畝?
【答案】(1)A、B兩類蔬菜每畝平均收入各是3000元、3500元;(2)聯(lián)合種植最多可以種植A類蔬菜22畝.
【解析】
(1)設(shè)A、B兩類蔬菜每畝平均收入各是x元、y元,根據(jù)等量關(guān)系甲種植戶總收入13500元,乙種植戶總收入13000元列方程組進(jìn)行求解即可得;
(2)設(shè)種植A類蔬菜a畝,則種植B類蔬菜(50-a)畝,根據(jù)總收入不低于16400元列不等式進(jìn)行求解即可得.
(1)設(shè)A、B兩類蔬菜每畝平均收入各是x元、y元,
根據(jù)題意得:,
解得:,
答:A、B兩類蔬菜每畝平均收入各是3000元、3500元;
(2)設(shè)種植A類蔬菜a畝,則種植B類蔬菜(50-a)畝,
根據(jù)題意得:3000a+3500(50-a)≥164000,
解得:a≤22,
答:聯(lián)合種植最多可以種植A類蔬菜22畝.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知D是△ABC的邊AB上一點(diǎn),CE∥AB,DE交AC于點(diǎn)O,且OA=OC,猜想線段CD與線段AE的大小關(guān)系和位置關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一列數(shù),第一個(gè)數(shù)為x1=1,第二個(gè)數(shù)為x2=3,從第三個(gè)數(shù)開始依次為x3,x4,…,xn,….從第二個(gè)數(shù)開始,每個(gè)數(shù)是左右相鄰兩個(gè)數(shù)和的一半,如x2=,x3=.
(1)求x3,x4,x5的值,并寫出計(jì)算過程;
(2)根據(jù)(1)的結(jié)果,推測x9等于多少;
(3)探索這一列數(shù)的規(guī)律,猜想第k(k為正整數(shù))個(gè)數(shù)xk等于多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一外地游客到某特產(chǎn)專營店,準(zhǔn)備購買精加工的豆腐乳和獼猴桃果汁兩種盒裝特產(chǎn),若購買3盒豆腐乳和2盒獼猴桃果汁共需60元;購買1盒豆腐乳和3盒獼猴桃果汁共需55元.
(1)請分別求出每盒豆腐乳和每盒獼猴桃果汁的價(jià)格;
(2)該游客購買了4盒豆腐乳和2盒獼猴桃果汁,共需多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明
如圖,端點(diǎn)為P的兩條射線分別交兩直線l1、l2于A、C、B、D四點(diǎn),已知∠PBA=∠PDC,∠l=∠PCD,求證:∠2+∠3=180°.
證明:∵∠PBA=∠PDC( )
∴ (同位角相等,兩直線平行)
∴∠PAB=∠PCD( )
∵∠1=∠PCD( )
∴ (等量代換)
∴PC//BF(內(nèi)錯(cuò)角相等,兩直線平行),
∴∠AFB=∠2( )
∵∠AFB+∠3=180°( )
∴∠2+∠3=180°(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點(diǎn),射線FM平分∠EFD,將射線FM平移,使得端點(diǎn)F與點(diǎn)G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數(shù)是( 。
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了計(jì)算河的寬度,某學(xué)習(xí)小組在河對岸選定一個(gè)目標(biāo)點(diǎn)A,再在河岸的這一邊選取點(diǎn)B和點(diǎn)C,使AB⊥BC,然后再選取點(diǎn)E,使E C⊥BC,用視線確定BC和AE的交點(diǎn)D.此時(shí)如果測得BD=160 米,DC=80米,E C=49米,求A、B間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線BC與半徑為6的⊙O相切于點(diǎn)B,點(diǎn)M是圓上的動(dòng)點(diǎn),過點(diǎn)M作MC⊥BC,垂足為C,MC與⊙O交于點(diǎn)D,AB為⊙O的直徑,連接MA、MB,設(shè)MC的長為x,(6<x<12).
(1)當(dāng)x=9時(shí),求BM的長和△ABM的面積;
(2)是否存在點(diǎn)M,使MDDC=20?若存在,請求出x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果經(jīng)過三角形某一個(gè)頂點(diǎn)的一條直線可把它分成兩個(gè)小等腰三角形,那么我們稱該三角形為等腰三角形的生成三角形,簡稱生成三角形.
(1)如圖,已知等腰直角三角形ABC,∠A=90°,試說明:△ABC是生成三角形;
(2)若等腰三角形DEF有一個(gè)內(nèi)角等于36°,請你畫出簡圖說明△DEF是生成三角形.(要求畫出直線,標(biāo)注出圖中等腰三角形的頂角、底角的度數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com