【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問(wèn)學(xué)校需要投入多少資金買草皮?
【答案】7200元.
【解析】
連接BD.在Rt△ABD中,根據(jù)勾股定理求得BD=5,在△CBD中,由勾股定理的逆定理判定∠DBC=90°,再由S四邊形ABCD=S△BAD+S△DBC求得四邊形ABCD的面積,由此即可求得所需費(fèi)用.
如圖,連接BD.
在Rt△ABD中,BD2=AB2+AD2=32+42=52,BD=5;
在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,
∴∠DBC=90°,
S四邊形ABCD=S△BAD+S△DBC=AD·AB+DB·BC=×4×3+×5×12=36,
所以需費(fèi)用36×200=7200(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在“清明節(jié)”前組織七年級(jí)全體學(xué)生進(jìn)行了一次“緬懷先烈,牢記歷史”知識(shí)競(jìng)賽,賽后隨機(jī)抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),制作如下頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
分?jǐn)?shù)段表示分?jǐn)?shù) | 頻數(shù) | 頻率 |
4 | ||
8 | b | |
a | ||
10 | ||
6 |
表中______,______,并補(bǔ)全直方圖;
若用扇形統(tǒng)計(jì)圖描述次成績(jī)統(tǒng)計(jì)圖分別情況,則分?jǐn)?shù)段對(duì)應(yīng)扇形的圓心角度數(shù)是______;
若該校七年級(jí)共900名學(xué)生,請(qǐng)估計(jì)該年級(jí)分?jǐn)?shù)在的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)、在直線上,點(diǎn)在線段上,與交于點(diǎn),,.
(1)請(qǐng)說(shuō)明:;
(2)若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC中,AD是的角平分線且AD把△ABC分成面積為3:7的兩部分(AC<AB),AC=5,則AB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(-1,0),B(0,2),點(diǎn)C在x軸上,且∠ABC=90°.
(1)求點(diǎn)C的坐標(biāo);
(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,使∠PAC=∠BCO?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與x軸、y軸分別交于C、D兩點(diǎn),與雙曲線在第一象限內(nèi)交于點(diǎn)P,過(guò)點(diǎn)P作軸于點(diǎn)A,軸于點(diǎn)B,已知且
直接寫(xiě)出直線的解析式______,雙曲線的解析式______;
設(shè)點(diǎn)Q是直線上的一點(diǎn),且滿足的面積是面積的2倍,請(qǐng)求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,3)且AO=BO,∠AOB=90°則點(diǎn)B的坐標(biāo)為( 。
A.(2,3)B.(-3,2)C.(-3,-2)D.(-2,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com