【題目】某區(qū)進(jìn)行課堂教學(xué)改革,將學(xué)生分成5個(gè)學(xué)習(xí)小組,采取團(tuán)團(tuán)坐的方式.如圖所示,這是某校八(1)班教室簡(jiǎn)圖,點(diǎn)、、分別代表五個(gè)學(xué)習(xí)小組的位置.已知點(diǎn)的坐標(biāo)為(-13).

(1)請(qǐng)按題意建立平面直角坐標(biāo)系(橫軸和縱軸均為小正方形的邊所在直線,每個(gè)小正方形邊長(zhǎng)為1個(gè)單位長(zhǎng)度),寫(xiě)出圖中其他幾個(gè)學(xué)習(xí)小組的坐標(biāo);

(2)若(1)中建立的平面直角坐標(biāo)系坐標(biāo)原點(diǎn)為,點(diǎn)的延長(zhǎng)線上,請(qǐng)寫(xiě)出、、之間的等量關(guān)系,并說(shuō)明原因.

【答案】1)見(jiàn)解析,B4,3),C(﹣1,0),D40),E(﹣2,5);(2)∠FOD=∠FAB+∠AFO,見(jiàn)解析

【解析】

1)根據(jù)A點(diǎn)的坐標(biāo)畫(huà)出平面直角坐標(biāo)系,再得出各個(gè)點(diǎn)的坐標(biāo)即可;

2)根據(jù)平行線的性質(zhì)和三角形外角性質(zhì)得出即可.

解:(1)畫(huà)出坐標(biāo)系:

由圖可得,B4,3),C(﹣1,0),D4,0),E(﹣25);

2)∵ABOD,

∴∠FOD=∠FGB

∵∠FGB是△AFG的外角,

∴∠FGB=∠FAB+∠AFO,

∴∠FOD=∠FAB+∠AFO

故答案為:∠FOD=∠FAB+∠AFO

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個(gè)老年活動(dòng)中心,這樣必須把1200立方米的生活垃圾運(yùn)走

(1)假如每天能運(yùn)x立方米所需時(shí)間為y,寫(xiě)出yx之間的函數(shù)解析式(不要求寫(xiě)出自變量的取值范圍);

(2)若每輛拖拉機(jī)一天能運(yùn)12立方米,5輛這樣的拖拉機(jī)要用多少天才能運(yùn)完?

(3)在(2)的條件下,運(yùn)了8天后,剩下的任務(wù)要在不超過(guò)6天的時(shí)間內(nèi)完成那么至少需要增加多少輛這樣的拖拉機(jī)才能按時(shí)完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年5月25日,中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)在貴陽(yáng)會(huì)展中心開(kāi)幕,博覽會(huì)設(shè)了編號(hào)為1~6號(hào)展廳共6個(gè),小雨一家計(jì)劃利用兩天時(shí)間參觀其中兩個(gè)展廳:第一天從6個(gè)展廳中隨機(jī)選擇一個(gè),第二天從余下的5個(gè)展廳中再隨機(jī)選擇一個(gè),且每個(gè)展廳被選中的機(jī)會(huì)均等.

(1)第一天,1號(hào)展廳沒(méi)有被選中的概率是  

(2)利用列表或畫(huà)樹(shù)狀圖的方法求兩天中4號(hào)展廳被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ΔABC中,∠A=90°,∠C=45°,BC=8,∠ABC的角平分線交AC于點(diǎn)D,DEBC,則CΔDEC=___________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,按以下步驟作圖:①分別以點(diǎn)A和點(diǎn)C為圓心,以大于AC的長(zhǎng)為半徑作弧,兩弧相交于M、N兩點(diǎn);②作直線MNBC于點(diǎn)D,連接AD.若AB=BD,AB=6,C=30°,則△ACD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種花卉,若購(gòu)進(jìn)甲種花卉20盆,乙種花卉50盆,需要720元;若購(gòu)進(jìn)甲種花卉40盆,乙種花卉30盆,需要880元.

1)求購(gòu)進(jìn)甲、乙兩種花卉,每盆各需多少元?

2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準(zhǔn)備拿出800元全部用來(lái)購(gòu)進(jìn)這兩種花卉,設(shè)購(gòu)進(jìn)甲種花卉m盆,求當(dāng)m的值等于40時(shí),兩種花卉全部銷售后獲得的利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5與坐標(biāo)軸交于A(﹣1,0),B(5,0),C(0,﹣5)三點(diǎn),頂點(diǎn)為D.

(1)請(qǐng)直接寫(xiě)出拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)連接BC與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B、C兩點(diǎn)重合),過(guò)點(diǎn)PPFDE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m.

①是否存在點(diǎn)P,使四邊形PEDF為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

②過(guò)點(diǎn)FFHBC于點(diǎn)H,求△PFH周長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果任意選擇一對(duì)有序整數(shù)(m,n),其中|m|≤1,|n|≤3,每一對(duì)這樣的有序整數(shù)被選擇的可能性是相等的,那么關(guān)于x的方程x2+nx+m=0有兩個(gè)相等實(shí)數(shù)根的概率是______

查看答案和解析>>

同步練習(xí)冊(cè)答案