【題目】如圖,等腰上一點,以為斜邊作等腰,連接,若,則的長為________________

【答案】

【解析】

由等腰直角三角形的性質(zhì)得出∠B=ACB=45°,BCABAC,得出AB=AC=1,由直角三角形的性質(zhì)得出ACAE=1,CE=2AE,得出AE,CEBE=ABAE=1,證出∠BCE=ACD,,得出△BCE∽△ACD,得出比例式,即可得出結(jié)果.

∵等腰RtABC,∠BAC=90°,BC,

∴∠B=ACB=45°,BCABAC,

AB=AC=1

∵∠ACE=30°,

ACAE=1,CE=2AE,

AE,CE,

BE=ABAE=1

∵△CDE是等腰直角三角形,

∴∠DCE=45°,CECD,

∴∠BCE=ACD,

∴△BCE∽△ACD

,

AD

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在課外實踐中,小明為了測量江中信號塔離河邊的距離,采取了如下措施:如圖在江邊處,測得信號塔的俯角為,若米,,米,平行于,的坡度為,坡長米,則的長為(  )(精確到0.1米,參考數(shù)據(jù):,

A.78.6B.78.7C.78.8D.78.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC60°,DBC邊上一點(不與點BC重合),將線段AD繞點A逆時針旋轉(zhuǎn)60°得到AE,連接EC,則:

1ACE的度數(shù)是    線段AC,CD,CE之間的數(shù)量關(guān)系是   

2)如圖,在△ABC中,ABAC,∠BAC90°,DBC邊上一點(不與點BC重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,請判斷線段AC,CDCE之間的數(shù)量關(guān)系,并說明理由;

3)如圖,ACDE交于點F,在(2)條件下,若AC8,求AF的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是線段AH上一點,AH3,以點O為圓心,OA的長為半徑作⊙O,過點HAH的垂線交⊙OC,N兩點,點B在線段CN的延長線上,連接AB交⊙O于點M,以ABBC為邊作ABCD

1)求證:AD是⊙O的切線;

2)若OHAH,求四邊形AHCD與⊙O重疊部分的面積;

3)若NHAH,BN,連接MN,求OHMN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線y1與直線y2的圖象交于A、B兩點.已知點A的坐標為(41),點Pa,b)是雙曲線y1上的任意一點,且0a4

1)分別求出y1y2的函數(shù)表達式;

2)連接PAPB,得到△PAB,若4ab,求三角形ABP的面積;

3)當點P在雙曲線y1上運動時,設PBx軸于點E,延長PAx軸于點F,判斷PEPF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y1=﹣x+2和拋物線相交于點A,B

(1)k時,求兩函數(shù)圖象的交點坐標;

(2)二次函數(shù)y2的頂點為PPAPB與直線y1=﹣x+2垂直時,求k的值.

(3)當﹣4x2時,y1y2,試直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB60°,P為它的內(nèi)部一點,M為射線OA上一點,連接PM,以P為中心,將線段PM順時針旋轉(zhuǎn)120°,得到線段PN,并且點N恰好落在射線OB上.

1)依題意補全圖1

2)證明:點P一定落在∠AOB的平分線上;

3)連接OP,如果OP2,判斷OM+ON的值是否變化,若發(fā)生變化,請求出值的變化范圍,若不變,請求出值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年國務院機構(gòu)改革不再保留國家衛(wèi)生和計劃生育委員會,組建國家衛(wèi)生健康委員會,在修正人口普查數(shù)據(jù)中的低齡人口漏登后,我們估計了1982-2030年育齡婦女情況.1982年中國15-49歲育齡婦女規(guī)模為2.5億,到2011年達3.8億人的峰值,2017年降至3.5億,預計到2030年將降至3.0.則數(shù)據(jù)2.5億、3.8億、3.5億、3.0億的中位數(shù)、平均數(shù)、方差分別是( )

A.3.25億、3.2億、0.245B.3.65億、3.2億、0.98

C.3.25億、3.2億、0.98D.3.65億、3億、0.245

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:AB是⊙O的直徑,C、G是⊙O上兩點,且點C是劣弧AG的中點,過點C的直線CDBG的延長線于點D,交BA的延長線于點E,連接BC,交OD于點F

1)求證:CD是⊙O的切線;

2)若EDDB,求證:3OF2DF

3)在(2)的條件下,連接AD,若CD3,求AD的長.

查看答案和解析>>

同步練習冊答案