(2010•東莞)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.

【答案】分析:(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因?yàn)椤鰽BE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可證明△AFE≌△BCA,再根據(jù)全等三角形的性質(zhì)即可證明AC=EF;
(2)根據(jù)(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據(jù)平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形.
解答:證明:(1)∵Rt△ABC中,∠BAC=30°,
∴AB=2BC,
又∵△ABE是等邊三角形,EF⊥AB,
∴AB=2AF
∴AF=CB,
在Rt△AFE和Rt△BCA中,
,
∴△AFE≌△BCA(HL),
∴AC=EF;

(2)由(1)知道AC=EF,
而△ACD是等邊三角形,
∴∠DAC=60°
∴EF=AC=AD,且AD⊥AB,
而EF⊥AB,
∴EF∥AD,
∴四邊形ADFE是平行四邊形.
點(diǎn)評:此題是首先利用等邊三角形的性質(zhì)證明全等三角形,然后利用全等三角形的性質(zhì)和等邊三角形的性質(zhì)證明平行四邊形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年廣東省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•東莞)如圖為主視圖方向的幾何體,它的俯視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•東莞)如圖,已知∠1=70°,如果CD∥BE,那么∠B的度數(shù)為( )

A.70°
B.100°
C.110°
D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•東莞)如圖,已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到正方形A2B2C2D2;以此下去…,則正方形A4B4C4D4的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省汕頭市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•東莞)如圖(1),(2)所示,矩形ABCD的邊長AB=6,BC=4,點(diǎn)F在DC上,DF=2.動點(diǎn)M、N分別從點(diǎn)D、B同時(shí)出發(fā),沿射線DA、線段BA向點(diǎn)A的方向運(yùn)動(點(diǎn)M可運(yùn)動到DA的延長線上),當(dāng)動點(diǎn)N運(yùn)動到點(diǎn)A時(shí),M、N兩點(diǎn)同時(shí)停止運(yùn)動.連接FM、FN,當(dāng)F、N、M不在同一直線時(shí),可得△FMN,過△FMN三邊的中點(diǎn)作△PWQ.設(shè)動點(diǎn)M、N的速度都是1個(gè)單位/秒,M、N運(yùn)動的時(shí)間為x秒.試解答下列問題:
(1)說明△FMN∽△QWP;
(2)設(shè)0≤x≤4(即M從D到A運(yùn)動的時(shí)間段).試問x為何值時(shí),△PWQ為直角三角形?當(dāng)x在何范圍時(shí),△PQW不為直角三角形?
(3)問當(dāng)x為何值時(shí),線段MN最短?求此時(shí)MN的值.

查看答案和解析>>

同步練習(xí)冊答案