【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結論:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數學 來源: 題型:
【題目】某公司到果園基地購買某種優(yōu)質水果,慰問醫(yī)務工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運回,已知該公司租車從基地到公司的運輸費為5000元.
(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質量x(千克)之間的函數關系式,并寫出自變量x的取值范圍.
(2)依據購買量判斷,選擇哪種購買方案付款最少?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,點G是BC邊上任意一點,DE⊥AG于點E,BF∥DE且交AG于點F.
(1)求證:DE=AF;
(2)若AB=4,BG=3,求AF的長;
(3)如圖2,連接DF、CE,判斷線段DF與CE的位置關系并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場投入13 800元資金購進甲、乙兩種礦泉水共500箱,礦泉水的成本價和銷售價如表所示:
類別/單價 | 成本價 | 銷售價(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場購進甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場共獲得利潤多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點E、F分別是□ABCD的邊BC、CD上的點,∠EAF=60°,AF=4
(1) 若AB=2,點E與點B、點F與點D分別重合,求平行四邊形ABCD的面積
(2) 若AB=BC,∠B=∠EAF=60°,求證:△AEF為等邊三角形
(3) 若BE=CE,CF=2DF,AB=3,直接寫出AE的長度(無需解答過程)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com