如圖,在等腰Rt△ABC中,AC=BC,以斜邊AB為一邊作等邊△ABD,使點C,D在AB的同側;再以CD為一邊作等邊△CDE,使點C,E落在AD的異側.若AE=2,則CD的長為
6
-
2
2
6
-
2
2
分析:延長DC交AB于F,得出直線DC是AB的垂直平分線,證△EDA≌△CDA,求出AC=1,求出CF、DF,即可得出答案.
解答:解:延長DC交AB于F,
由題意易得,
∵AC=BC,
∴C在AB的垂直平分線上,
同理,D在AB的垂直平分線上,
∴CD是等邊三角形ABD的角平分線,
∴∠ADC=30°,
則∠EDA=60°-30°=30°,
∵ED=DC,AD=AD,∠EDA=∠CDA=30°
∴△EDA≌△CDA,
∴EA=AC=1,
∴在等腰Rt△ABC中AB=
12+12
=
2

AF=BF=
1
2
2
,
在Rt△ACF中,由勾股定理得:CF=
12-(
1
2
2
)2
=
1
2
2
,
在Rt△DAF中,∠ADF=30°,AD=AB=
2
,AF=
1
2
2
,由勾股定理得:DF=
1
2
6
,
∴DC=DF-CF=
1
2
6
-
1
2
2
=
6
-
2
2
,
故答案為:
6
-
2
2
點評:本題考查了等邊三角形性質,全等三角形的性質和判定,等腰直角三角形性質,勾股定理,含30度角的直角三角形等知識點的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結論是( 。
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊精英家教網上運動,且保持AD=CE.連接DE、DF、EF.
①求證:△DFE是等腰直角三角形;
②在此運動變化的過程中,四邊形CDFE的面積是否保持不變?試說明理由.
③求△CDE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,則
ADDC
=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在等腰Rt△ABC中,∠ACB=90°,CA=CB,點M、N是AB上任意兩點,且∠MCN=45°,點T為AB的中點.以下結論:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正確結論的序號是(  )
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.
(1)在此運動變化的過程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面積.

查看答案和解析>>

同步練習冊答案