【題目】經(jīng)歷疫情復(fù)學(xué)后,學(xué)校開展了多種形式的防疫知識(shí)講座,并舉行了全員參加的“防疫”知識(shí)競(jìng)賽,試卷題目共10題,每題10分.現(xiàn)分別從七年級(jí)1,2,3班中各隨機(jī)抽取10名同學(xué)的成績(jī)(單位:分).
收集整理數(shù)據(jù)如下:
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | |
2班 | 83 | ||
3班 | 80 | 80 |
根據(jù)以上信息回答下列問題:
(1)請(qǐng)直接寫出表格中,,,的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績(jī)比較好?請(qǐng)說明理由(一條理由即可);
(3)為了讓學(xué)生重視安全知識(shí)的學(xué)習(xí),學(xué)校將給競(jìng)賽成績(jī)滿分的同學(xué)頒發(fā)獎(jiǎng)狀,該校七年級(jí)學(xué)生共120人,試估計(jì)需要準(zhǔn)備多少?gòu)埅?jiǎng)狀?
【答案】(1),,,;(2)我認(rèn)為七年級(jí)2班的成績(jī)比較好,隨機(jī)抽取的樣本中,三個(gè)班樣本成績(jī)的平均數(shù)都為83, 2班成績(jī)的中位數(shù)為85,大于1班和3班成績(jī)的中位數(shù)80;2班成績(jī)的眾數(shù)90大于1班和3班成績(jī)的眾數(shù)80;(3)估計(jì)需要準(zhǔn)備的獎(jiǎng)狀是16張.
【解析】
(1)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)分別求解即可得到答案;
(2)根據(jù)三個(gè)班平均分都是83分,再分析中位數(shù)以及眾數(shù),即可得到答案;
(3)根據(jù)調(diào)查人數(shù)的滿分情況估算總?cè)藬?shù)的滿分情況,即可得到答案;
解:(1)從條形統(tǒng)計(jì)圖得到: ,
根據(jù)中位數(shù)的定義,1、2班調(diào)查人數(shù)為10人,即分?jǐn)?shù)從小到大排序,第5第6名同學(xué)的平均成績(jī)即是中位數(shù),
從折線圖得到1班70分一名同學(xué),80分6名同學(xué),
故 ,
從折線圖得到2班60分一名同學(xué),70分一名同學(xué),80分3名同學(xué),90分四名同學(xué),
故 ,
2班90分人數(shù)最多,故眾數(shù)c=90,
故:,,,.
(2)我認(rèn)為七年級(jí)2班的成績(jī)比較好,理由如下:
隨機(jī)抽取的樣本中,三個(gè)班樣本成績(jī)的平均數(shù)都為83, 2班成績(jī)的中位數(shù)為85,大于1班和3班成績(jī)的中位數(shù)80;
2班成績(jī)的眾數(shù)90大于1班和3班成績(jī)的眾數(shù)80,
因此我認(rèn)為2班成績(jī)較好 .
(3)因?yàn)樗槿〉臉颖局,樣本總量?/span>30,而其中滿分人數(shù)是1+1+2=4.
所以,.
答:估計(jì)需要準(zhǔn)備的獎(jiǎng)狀是16張.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某區(qū)2018年初中畢業(yè)生畢業(yè)后的去向,某區(qū)教育部門對(duì)部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向(A,讀普通高中;B,讀職業(yè)高中;C,直接進(jìn)入社會(huì)就業(yè);D,其它)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(a)、(b).請(qǐng)問:
(1)此次共調(diào)查了多少名初中畢業(yè)生?
(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;
(3)若某區(qū)2018年初三畢業(yè)生共有3500人,請(qǐng)估計(jì)2019年初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),試過點(diǎn)P作x軸的垂線1,再過點(diǎn)A作1的垂線,垂足為Q,連接AP.
(1)求拋物線的函數(shù)表達(dá)式和點(diǎn)C的坐標(biāo);
(2)若△AQP∽△AOC,求點(diǎn)P的橫坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P位于拋物線的對(duì)稱軸的右側(cè)時(shí),若將△APQ沿AP對(duì)折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為點(diǎn)Q′,請(qǐng)直接寫出當(dāng)點(diǎn)Q′落在坐標(biāo)軸上時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,E是矩形ABCD的邊BC上一點(diǎn),EF⊥AE,分別交AC,CD于點(diǎn)M,F,BG⊥AC,垂足為G,BG交AE于點(diǎn)H.
(1)求證:△ABE∽△ECF;
(2)找出與△ABH相似的三角形,并證明;
(3)若E是BC中點(diǎn),BC=2AB,AB=4,求EM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求直線BC的解析式.
(2)點(diǎn)P是線段BC下方拋物線上的一個(gè)動(dòng)點(diǎn).
①求四邊形PBAC面積的最大值,并求四邊形PBAC面積的最大時(shí)P點(diǎn)的坐標(biāo);
②如果在x軸上存在點(diǎn)Q,使得以點(diǎn)B、C、P、Q為頂點(diǎn)的四邊形是平行四邊形.求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E是邊BC上一點(diǎn),連接AE,過點(diǎn)E作EM⊥AE,交對(duì)角線AC于點(diǎn)M,過點(diǎn)M作MN⊥AB,垂足為N,連接NE.
(1)求證:AE=NE+ME;
(2)如圖2,延長(zhǎng)EM至點(diǎn)F,使EF=EA,連接AF,過點(diǎn)F作FH⊥DC,垂足為H.猜想CH與FH存在的數(shù)量關(guān)系,并證明你的結(jié)論;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABC繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角(0°<<90°)得到△DEC,設(shè)CD交AB于點(diǎn)F,連接AD,當(dāng)旋轉(zhuǎn)角度數(shù)為________,△ADF是等腰三角形.
A.20°B.40°C.10°D.20°或40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,點(diǎn)E是線段AC上一動(dòng)點(diǎn),連接DE.
填空:①則的值為______;②∠EAD的度數(shù)為_______.
(2)類比探究
如圖2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,點(diǎn)E是線段AC上一動(dòng)點(diǎn),連接DE.請(qǐng)求出的值及∠EAD的度數(shù);
(3)拓展延伸
如圖3,在(2)的條件下,取線段DE的中點(diǎn)M,連接AM、BM,若BC=4,則當(dāng)△ABM是直角三角形時(shí),求線段AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩會(huì)期間,記者隨機(jī)抽取參會(huì)的部分代表,對(duì)他們某天發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
發(fā)言次數(shù)n | |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
(1)求得樣本容量為 ,并補(bǔ)全直方圖;
(2)已知A組發(fā)表提議的代表中恰有1位女士,E組發(fā)表提議的代表中只有2位男士,現(xiàn)從A組與E組中分別抽一位代表寫報(bào)告,請(qǐng)用列表法或畫樹狀圖的方法,求所抽的兩位代表恰好都是男士的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com