【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn)A,與軸交點(diǎn)C,拋物線A,C兩點(diǎn),與x軸交于另一點(diǎn)B

1)求拋物線的解析式.

2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)E,連接BE,與直線AC相交于點(diǎn)F,當(dāng)時(shí),求sinEBA的值.

3)點(diǎn)N是拋物線對(duì)稱軸上一點(diǎn),在(2)的條件下,若點(diǎn)E位于對(duì)稱軸左側(cè),在拋物線上是否存在一點(diǎn)M,使以M,N,EB為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1,(2 ,(3)存在;(2,﹣10)或(﹣4,﹣10)或(06

【解析】

1)先由直線解析式求出點(diǎn)A、C坐標(biāo),再將所求坐標(biāo)代入二次函數(shù)解析式,求解可得;

2)先求出B1,0),設(shè)Et),作EHx軸、FGx軸,知EHFG,由EF=BF,結(jié)合BH=1-t可得,據(jù)此知F,),從而得出方程,解方程得出點(diǎn)E坐標(biāo),再進(jìn)一步求解可得;

3)分EB為平行四邊形的邊和EB為平行四邊形的對(duì)角線兩種情況,其中EB為平行四邊形的邊時(shí)再分點(diǎn)M在對(duì)稱軸右側(cè)和左側(cè)兩種情況分別求解可得.

解:(1)在y2x+6中,當(dāng)x0時(shí)y6,當(dāng)y0時(shí)x=﹣3

C0,6)、A(﹣3,0),

∵拋物線的圖象經(jīng)過A、C兩點(diǎn),

,解得:

∴拋物線的解析式為;

2)令﹣2x24x+60,

解得B1,0),

設(shè)點(diǎn)E的橫坐標(biāo)為t,∴Et,),

如圖,過點(diǎn)EEHx軸于點(diǎn)H,過點(diǎn)FFGx軸于點(diǎn)G,則EHFG,

,

,

,

∴點(diǎn)F的橫坐標(biāo)為

直線AC的解析式為y2x6,

,

,

t2+3t+20,解得

當(dāng)t=﹣2時(shí),

當(dāng)t=﹣1時(shí),

當(dāng)點(diǎn)E的坐標(biāo)為(﹣2,6)時(shí),在RtEBH中,EH6,BH3

,

同理,當(dāng)點(diǎn)E的坐標(biāo)為(﹣18)時(shí),

,

sinEBA的值為;

3)存在,且M的坐標(biāo)為(2,﹣10)或(﹣4,﹣10)或(0,6).

∵點(diǎn)N在對(duì)稱軸上,∴xN=﹣1,

①當(dāng)EB為平行四邊形的邊時(shí),分兩種情況:

(Ⅰ)點(diǎn)M在對(duì)稱軸右側(cè)時(shí),BN為對(duì)角線,

E,B1,0),

∴由平移的性質(zhì)得xM2,

當(dāng)x2時(shí),y

M2,﹣10);

(Ⅱ)點(diǎn)M在對(duì)稱軸左側(cè)時(shí),BM為對(duì)角線,

xN=﹣1,B1,0),E(﹣26),

∴由平移的性質(zhì)得xM=﹣4,

當(dāng)x=﹣4時(shí),y

M(﹣4,﹣10);

②當(dāng)EB為平行四邊形的對(duì)角線時(shí),

B1,0),E,xN,

∴由中點(diǎn)坐標(biāo)公式得:1+(﹣2)=﹣1+xM,

xM0,

當(dāng)x0時(shí),y6,

M0,6);

綜上所述,M的坐標(biāo)為(2,﹣10)或(﹣4,﹣10)或(0,6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,l是經(jīng)過A20),B0b)兩點(diǎn)的直線,且b0,點(diǎn)C的坐標(biāo)為(2,0),當(dāng)點(diǎn)B移動(dòng)時(shí),過點(diǎn)CCDl交于點(diǎn)D

1)求點(diǎn)D,O之間的距離;

2)當(dāng)tanCDO=時(shí),求直線l的解析式;

3)在(2)的條件下,直接寫出△ACD與△AOB重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)yx2mxn的圖像與坐標(biāo)軸交于A、B、C三點(diǎn),其中A點(diǎn)的坐標(biāo)為、點(diǎn)B的坐標(biāo)是

(1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);

(2)若點(diǎn)D的坐標(biāo)是,點(diǎn)F為該二次函數(shù)在第四象限內(nèi)圖像上的動(dòng)點(diǎn),連接CD、CF,以CDCF為鄰邊作平行四邊形CDEF.設(shè)平行四邊形CDEF的面積為S

①求S的最大值;

②在點(diǎn)F的運(yùn)動(dòng)過程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖像上時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長為13.3米,從DE兩處測得路燈A的仰角分別為α45°,且tanα6.求燈桿AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店老板到廠家選購、兩種品牌的羽絨服,品牌羽絨服每件進(jìn)價(jià)比品牌羽絨服每件進(jìn)價(jià)多元,若用元購進(jìn)種羽絨服的數(shù)量是用元購進(jìn)種羽絨服數(shù)量的.

1)求、兩種品牌羽絨服每件進(jìn)價(jià)分別為多少元?

2)若品牌羽絨服每件售價(jià)為元,品牌羽絨服每件售價(jià)為元,服裝店老板決定一次性購進(jìn)兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤不低于元,則最少購進(jìn)品牌羽絨服多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),與x軸負(fù)半軸交于B,與正半軸交于點(diǎn),且

1)求該二次函數(shù)解析式;

2)若是線段上一動(dòng)點(diǎn),作,交于點(diǎn),連結(jié)當(dāng)面積最大時(shí),求點(diǎn)的坐標(biāo);

3)若點(diǎn)軸上方的拋物線上的一個(gè)動(dòng)點(diǎn),連接,設(shè)所得的面積為.問:是否存在一個(gè)的值,使得相應(yīng)的點(diǎn)有且只有個(gè),若有,求出這個(gè)的值,并求此時(shí)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“全民防控新冠病毒”期間某公司推出一款消毒產(chǎn)品,成本價(jià)8/千克,經(jīng)過市場調(diào)查,該產(chǎn)品的日銷售量(千克)與銷售單價(jià)(元/千克)之間滿足一次函數(shù)關(guān)系,該產(chǎn)品的日銷售量與銷售單價(jià)幾組對(duì)應(yīng)值如表:

銷售單價(jià)(元/千克)

12

16

20

24

日銷售量(千克)

220

180

140

(注:日銷售利潤日銷售量(銷售單價(jià)成本單價(jià))

1)求關(guān)于的函數(shù)解析式(不要求寫出的取值范圍);

2)根據(jù)以上信息,填空:

_______千克;

②當(dāng)銷售價(jià)格_______元時(shí),日銷售利潤最大,最大值是_______元;

3)該公司決定從每天的銷售利潤中捐贈(zèng)100元給“精準(zhǔn)扶貧”對(duì)象,為了保證捐贈(zèng)后每天的剩余利潤不低于1500元,試確定該產(chǎn)品銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個(gè)小正方形的邊長為的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).從一個(gè)格點(diǎn)移動(dòng)到與之相距的另一個(gè)格點(diǎn)的運(yùn)動(dòng)稱為一次跳馬變換.例如,在的正方形網(wǎng)格圖形中(如圖1),從點(diǎn)經(jīng)過一次跳馬變換可以到達(dá)點(diǎn),,等處現(xiàn)有的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點(diǎn)經(jīng)過跳馬變換到達(dá)與其相對(duì)的頂點(diǎn),最少需要跳馬變換的次數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠BAC90°

1)如圖1,若直線ADBC相交于M,過點(diǎn)BAM的垂線,垂足為D,連接CD并延長BDE,使得DEDC,過點(diǎn)EEFCDF,證明:ADEF+BD

2)如圖2,若直線ADCB的延長線相交于M,過點(diǎn)BAM的垂線,垂足為D,連接CD并延長BDE,使得DEDC,過點(diǎn)EEFCDCD的延長線于F,探究:AD、EF、BD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案