【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)y=+x的圖象與性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)函數(shù)y=+x的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | … | ||||
y | … | ﹣ | ﹣ | ﹣ | ﹣1 | ﹣ | ﹣ | 3 | m |
| … |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(2,3),結(jié)合函數(shù)的圖象,寫(xiě)出該函數(shù)的其它性質(zhì)(一條即可): .
(5)小明發(fā)現(xiàn),①該函數(shù)的圖象關(guān)于點(diǎn)( , )成中心對(duì)稱(chēng);
②該函數(shù)的圖象與一條垂直于x軸的直線(xiàn)無(wú)交點(diǎn),則這條直線(xiàn)為 ;
③直線(xiàn)y=m與該函數(shù)的圖象無(wú)交點(diǎn),則m的取值范圍為 .
【答案】(1)x≠1,(2),(4)x>2時(shí)y隨x的增大而增大,
(5)①( ,),②x=1,③﹣1<m<3.
【解析】
(1)令分母不等于零即可求出變量x的取值范圍;
(2)把x=4代入y=+x即可求出m的值;
(3)用光滑曲線(xiàn)把各點(diǎn)順次連接即可;
(4)根據(jù)圖像解答即可,如x>2時(shí)y隨x的增大而增大.(答案不唯一);
(5)根據(jù)圖像解答即可.
(1)函數(shù)y=+x的自變量x的取值范圍是x≠1.
故答案為x≠1.
(2)x=4時(shí),y=,
∴m=.
(3)函數(shù)圖象如圖所示:
(4)x>2時(shí)y隨x的增大而增大.(答案不唯一)
故答案為:x>2時(shí)y隨x的增大而增大.
(5)①該函數(shù)的圖象關(guān)于點(diǎn)(1,1)成中心對(duì)稱(chēng);
②該函數(shù)的圖象與一條垂直于x軸的直線(xiàn)無(wú)交點(diǎn),則這條直線(xiàn)為x=1;
③直線(xiàn)y=m與該函數(shù)的圖象無(wú)交點(diǎn),則m的取值范圍為﹣1<m<3;
故答案為1,1,x=1,﹣1<m<3;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點(diǎn)為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線(xiàn),交點(diǎn)為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線(xiàn),交點(diǎn)為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線(xiàn),交點(diǎn)為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線(xiàn),交點(diǎn)為En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在等邊中,點(diǎn)D、E分別在邊BC、AB上,且,AD與CE交于點(diǎn)F,則的度數(shù)為
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知P(3,3),點(diǎn)B、A分別在x軸正半軸和y軸正半軸上,∠APB=90°,則OA+OB=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線(xiàn)交BC于點(diǎn)E,連接OE
(1)證明OE∥AD;
(2)①當(dāng)∠BAC= °時(shí),四邊形ODEB是正方形.
②當(dāng)∠BAC= °時(shí),AD=3DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上張老師將課本44頁(yè)第4題進(jìn)行了改編,圖形不變.請(qǐng)你完成下問(wèn)題.
(1)如圖1,∠ACB=∠ADB,BC=BD,求證:△ABC≌△ABD.
(2)如圖2,∠CAB=∠DAB,BC=BD,求證:△ABC≌△ABD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC與△DBC中,∠ACB=∠DBC=90°,E是BC的中點(diǎn),EF⊥AB,AB=DE.
(1)求證:BC=DB;
(2)若BD=8cm,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:如果一個(gè)三角形一條邊上的高等于這條邊,那么這個(gè)三角形叫做“等高底”三角形,這條邊叫做這個(gè)三角形的“等底”.
(1)概念理解:
如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請(qǐng)說(shuō)明理由.
(2)問(wèn)題探究:
如圖2,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線(xiàn)的對(duì)稱(chēng)圖形得到△A'BC,連結(jié)AA′交直線(xiàn)BC于點(diǎn)D.若點(diǎn)B是△AA′C的重心,求的值.
(3)應(yīng)用拓展:
如圖3,已知l1∥l2,l1與l2之間的距離為2.“等高底”△ABC的“等底”BC在直線(xiàn)l1上,點(diǎn)A在直線(xiàn)l2上,有一邊的長(zhǎng)是BC的倍.將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)45°得到△A'B'C,A′C所在直線(xiàn)交l2于點(diǎn)D.求CD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ACB=72°,
(1)若BD⊥AC于D,求∠ABD的度數(shù);
(2)若CE平分∠ACB,求證:AE=BC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com