【題目】已知射線AC是∠MAN的角平分線, NAC=60°, B, D分別是射線AN. AM上的點(diǎn),連接BD.

(1)在圖①中,若∠ABC=ADC=90°,求∠CDB的大;

(2)在圖②中,若∠ABC+ADC=180°,求證:四邊形ABCD的面積是個(gè)定值.

【答案】(1)∠CDB=60°.(2)見(jiàn)解析

【解析】

1)利用四邊形的內(nèi)角和即可得出∠BCD的度數(shù),再利用角平分線的性質(zhì)定理即可得出CD=CBBCD是等邊三角形,即可求解;
2)先判斷出∠CDE=ABC,進(jìn)而得出CDE≌△CBFAAS),再根據(jù)分割面積法證明四邊形ABCD的面積是定值即可.

(1)∵射線AC是∠MAN的角平分線,NAC=60°,

∴∠MAN=120°

∵∠ABC=ADC=90°,

根據(jù)四邊形的內(nèi)角和得,BCD=360°(ABC+ADC+MAN)=60°,

AC是∠MAN的平分線,CDAM.CBAN,

CD=CB(角平分線的性質(zhì)定理)

∴△BCD是等邊三角形;

∴∠CDB=60°.

(2)如圖②,(1)得出,BCD=60°

過(guò)點(diǎn)CCEAME,CFANF,

AC是∠MAN的平分線,

CE=CF,

∵∠ABC+ADC=180°,ADC+CDE=180°,

∴∠CDE=ABC

CDECFB中,

∴△CDECBF(AAS),

S四邊形ABCD

∴四邊形ABCD的面積是個(gè)定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,BC6,AB、AC的垂直平分線分別交邊BC于點(diǎn)M、N,若MN2,則△AMN的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知非負(fù)數(shù)a、b、c滿足,代數(shù)式3a+4b+5c的最大值是x,最小值是y,則x+y的值是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題
(1)計(jì)算: )﹣ ﹣| ﹣3|
(2)計(jì)算:(﹣1)2014 sin45°+(π﹣3.14)0
(3)解方程:2x2+x﹣6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,AB//ED, BF平分∠ABC, DF平分∠EDC.

(1)若∠ABC =130°,∠EDC=110°,求∠C的度數(shù)和∠BFD的度數(shù);

(2)請(qǐng)直接寫出∠BFD與∠C的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】清明節(jié)假期的某天,小強(qiáng)騎車從家出發(fā)前往革命烈士陵園掃墓,勻速行駛一段時(shí)間后,因車子出現(xiàn)問(wèn)題,途中耽擱了一段時(shí)間,車子修好后,以更快的速度勻速前行,到達(dá)烈士陵園掃完墓后勻速騎車回家.其中表示小強(qiáng)從家出發(fā)后的時(shí)間,表示小強(qiáng)離家的距離,下面能反映變量之間關(guān)系的大致圖象是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家距離學(xué)校8千米,今天早晨,小明騎車上學(xué)圖中,自行車出現(xiàn)故障,恰好路邊有便民服務(wù)點(diǎn),幾分鐘后車修好了,他以更快的速度勻速騎車到校.我們根據(jù)小明的這段經(jīng)歷畫了一幅圖象(如圖),該圖描繪了小明行駛的路程(千米)與他所用的時(shí)間(分鐘)之間的關(guān)系.請(qǐng)根據(jù)圖象,解答下列問(wèn)題:

1)小明行了多少千米時(shí),自行車出現(xiàn)故障?修車用了幾分鐘?

2)小明從早晨出發(fā)直到到達(dá)學(xué)校共用了多少分鐘?

3)小明修車前、后的行駛速度分別是多少?

4)如果自行車未出現(xiàn)故障,小明一直用修車前的速度行駛,那么他比實(shí)際情況早到或晚到多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某中學(xué)準(zhǔn)備在校園里利用圍墻的一段,再砌三面墻,圍成一個(gè)矩形花園ABCD(圍墻MN最長(zhǎng)可利用25m),現(xiàn)在已備足可以砌50m長(zhǎng)的墻的材料,試設(shè)計(jì)一種砌法,使矩形花園的面積為300m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)EF分別是B、C的對(duì)應(yīng)點(diǎn).

1)請(qǐng)畫出平移后的DEF,并求DEF的面積.
2)若連接AD、CF,則這兩條線段之間的關(guān)系是 ;
3)請(qǐng)?jiān)?/span>AB上找一點(diǎn)P,使得線段CP平分ABC的面積,在圖上作出線段CP

查看答案和解析>>

同步練習(xí)冊(cè)答案