【題目】如圖,⊙O的直徑AB=2,C是弧AB的中點(diǎn),AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為( 。
A. ﹣4 B. 7﹣4 C. 6﹣ D.
【答案】A
【解析】
∵O的直徑AB=2,
∴∠C=90°,
∵C是弧AB的中點(diǎn),
∴,
∴AC=BC,
∴∠CAB=∠CBA=45°,
∵AE,BE分別平分∠BAC和∠ABC,
∴∠EAB=∠EBA=22.5°,
∴∠AEB=180° (∠BAC+∠CBA)=135°,
連接EO,
∵∠EAB=∠EBA,
∴EA=EB,
∵OA=OB,
∴EO⊥AB,
∴EO為Rt△ABC內(nèi)切圓半徑,
∴S△ABC=(AB+AC+BC)EO=ACBC,
∴EO=1,
∴AE2=AO2+EO2=12+(1)2=42,
∴扇形EAB的面積==,△ABE的面積=ABEO=1,
∴弓形AB的面積=扇形EAB的面積△ABE的面積=,
∴陰影部分的面積=O的面積弓形AB的面積=()=4,
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AB∥CD,直線l與直線AB,CD相交于點(diǎn)E,F,點(diǎn)P是射線EA上的一個動點(diǎn)(不包括端點(diǎn))
(1)若∠CFE=119°,PG交∠FEB的平分線EG于點(diǎn)G,∠APG=150°,則∠G的大小為 .
(2)如圖2,連接PF.將△EPF折疊,頂點(diǎn)E落在點(diǎn)Q處.
①若∠PEF=48°,點(diǎn)Q剛好落在其中的一條平行線上,請直接寫出∠EFP的大小為 .
②若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廣場上有一個形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍(lán)、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯誤的是( )
A. 紅花、綠花種植面積一定相等
B. 紫花、橙花種植面積一定相等
C. 紅花、藍(lán)花種植面積一定相等
D. 藍(lán)花、黃花種植面積一定相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“珍重生命,注意安全!”同學(xué)們在上下學(xué)途中一定要注意騎車安全.小明騎單車上學(xué),當(dāng)他騎了一段時間,想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學(xué)校,以下是他本次所用的時間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是 米,小明在書店停留了 分鐘
(2)本次上學(xué)途中,小明一共行駛了 米,一共用了 分鐘.
(3)我們認(rèn)為騎單車的速度超過300米分鐘就超越了安全限度.問:在整個上學(xué)的途中哪個時間段小明騎車速度最快,速度在安全限度內(nèi)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于點(diǎn)D,則S△ADC的值是( )
A. 10 B. 8 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了備戰(zhàn)初三物理、化學(xué)實(shí)驗(yàn)操作考試,某校對初三學(xué)生進(jìn)行了模擬訓(xùn)練,物理、化學(xué)各有4各不同的操作實(shí)驗(yàn)題目,物理用番號①、②、③、④代表,化學(xué)用字母a、b、c、d表示,測試時每名學(xué)生每科只操作一個實(shí)驗(yàn),實(shí)驗(yàn)的題目由學(xué)生抽簽確定,第一次抽簽確定物理實(shí)驗(yàn)題目,第二次抽簽確定化學(xué)實(shí)驗(yàn)題目.
(1)請用樹形圖法或列表法,表示某個同學(xué)抽簽的各種可能情況.
(2)小張同學(xué)對物理的①、②和化學(xué)的b、c號實(shí)驗(yàn)準(zhǔn)備得較好,他同時抽到兩科都準(zhǔn)備的較好的實(shí)驗(yàn)題目的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com